V2X环境下基于MPC算法的弯道区域CACC车队轨迹跟踪控制策略
CSTR:
作者:
作者单位:

1. 桂林电子科技大学 广西智慧交通重点实验室,广西 桂林 541004;2. 桂林电子科技大学 $ $建筑与交通工程学院, 广西 桂林 541004;3. 东风柳州汽车有限公司 商用车技术中心,$ $广西 柳州 545005;4. 桂林电子科技大学 机电工程学院, 广西 桂林 541004

作者简介:

通讯作者:

E-mail: zhaohongzhuan@guet.edu.cn.

中图分类号:

TP399;U491.5

基金项目:

广西重点研发计划项目(桂科AB21220052);广西科技重大专项项目(桂科AA22068101);柳州市科技重大专项项目(2021CAA0101);桂林市创新平台和人才计划项目(20210217-15);柳州市科技计划项目(2022AAA0103);广西精密导航技术与应用重点实验室项目(DH202225).


An MPC-based driving trajectory tracking control strategy of CACC fleet in curves under V2X environment
Author:
Affiliation:

1. Guangxi Key Laboratory of Intelligent Transportation System(ITS),Guilin University of Electronic Technology,Guilin 541004,China;2. School of Architecture and Transportation Engineering, Guilin University of Electronic Technology,Guilin 541004,China;3. Commercial Vehicle Technology Center,Dongfeng Liuzhou Motor Co., Ltd., Liuzhou 545005,China;4. School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology,Guilin 541004,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对CACC(cooperative adaptive cruise control)车队在弯道行驶的安全性和稳定性问题,提出一种V2X(vehicle to everything)环境下基于MPC(model predictive control)算法的弯道区域CACC车队行驶轨迹跟踪策略.首先,分析CACC车队在弯道区域的行驶工况以及纵向平衡问题,并基于牛顿第二定律构建车辆在弯道行驶的车辆动力学模型;其次,CACC车队基于V2X技术实现车车之间状态信息的实时交互,并以基于车辆运动学的MPC算法为基础,引入可变间距的车队安全距离控制模型,提出一种适用于弯道区域的轨迹跟踪模型;最后,通过二次规划进行模型求解.实验分析结果表明:V2X环境下的CACC车队在弯道行驶过程中面对不同的行驶工况能够不同程度地保证车车之间的安全性、稳定性以及驾乘人员的舒适性,有效验证了所提V2X环境下基于MPC算法的弯道区域CACC车队轨迹跟踪策略的可行性.

    Abstract:

    An model predictive control(MPC) algorithm based cooperative adaptive cruise control(CACC) fleet driving trajectory tracking approach is proposed under the V2X environment to address the issue of safety and stability of CACC fleet driving trajectory in the curved area. First, the driving conditions and longitudinal balance of the CACC fleet in the bend region are analyzed, and a model of vehicle dynamics based on the Newton's second law is established. Second, the CACC fleet realizes real-time interaction of state information between vehicles using V2X technology, and introduces a fleet safety distance control model with variable spacing based on the MPC algorithm of vehicle kinematics, then a trajectory tracking model for curved areas is proposed. Finally, the model is solved using quadratic programming. Analysis of the experimental results shows that the CACC fleet in a V2X environment can ensure the safety, stability, and comfort of the drivers and passengers to varying degrees while driving in the bend. It effectively verifies the feasibility of the MPC algorithm-based trajectory tracking control strategy for the CACC fleet driving in curved areas under the V2X environment.

    参考文献
    相似文献
    引证文献
引用本文

赵红专,吴浩,卢宁宁,等. V2X环境下基于MPC算法的弯道区域CACC车队轨迹跟踪控制策略[J].控制与决策,2024,39(3):975-984

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-25
  • 出版日期: 2024-03-20
文章二维码