融合稀疏自表示和残差驱动的自适应模糊C均值聚类
CSTR:
作者:
作者单位:

上海理工大学 控制工程系,上海 200093

作者简介:

通讯作者:

E-mail: sonya@usst.edu.cn.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(62073223);上海市自然科学基金项目(22ZR1443400);航天飞行动力学技术国防科技重点实验室开放课题项目(6142210200304).


Sparse self-representation incorporated and residual driven adaptive fuzzy ${bm C
Author:
Affiliation:

Department of Control Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种融合稀疏自表示和残差驱动的自适应模糊C均值聚类算法(R2AFCM).该算法的优点主要体现在以下两个方面:1)利用稀疏自表示技术求解样本数据的字典矩阵,并将其表征的全局信息考虑到目标函数中,充分考虑数据分布特点,改进传统模糊C均值聚类算法重点关注局部信息的不足;2)在目标函数中引入加权残差估计正则化项,与自适应模糊聚类算法的正则化项相结合,约束模型训练,有效降低混合噪声对分割结果的影响.在磁共振成像、VOC2012数据集以及自然图像上进行对比实验,结果表明,所提出的聚类算法在添加了20%椒盐噪声和均值为0.4、方差为0.01的高斯噪声,以及50%椒盐噪声和均值为0、方差为0.1的混合噪声下与其他算法相比,具有更高的分割精度和更强的鲁棒性.

    Abstract:

    This paper proposes an adaptive fuzzy C-means clustering algorithm that combines sparse self-representation and residual drive (R2AFCM). The advantages of this algorithm are mainly reflected in the following two aspects: 1) Using sparse self-representation technology to solve the dictionary matrix of sample data, and taking the global information represented by it into the objective function, fully considering the data distribution characteristics, the lack of the traditional fuzzy C-means clustering algorithm focusing on local information is improved. 2) The weighted residual estimation regularization term is introduced in the objective function, combined with the regularization term of the adaptive fuzzy clustering algorithm, which constrains the model training, and effectively reduces the influence of mixed noise on the segmentation results. Finally, comparative experiments are carried out on magnetic resonance imaging, VOC2012 dataset and natural images. The experimental results show that the proposed clustering algorithm adds 20% salt and pepper noise, with a mean value of 0.4 and a variance of Gaussian noise of 0.01, and 50% salt and pepper noise and mixed noise with mean value of 0 and variance of 0.1, it has higher segmentation accuracy and stronger robustness than other algorithms.

    参考文献
    相似文献
    引证文献
引用本文

宋燕,李元昊,李明.融合稀疏自表示和残差驱动的自适应模糊C均值聚类[J].控制与决策,2024,39(4):1333-1341

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-15
  • 出版日期: 2024-04-20
文章二维码