基于多尺度时空图神经网络的污染物浓度预测
CSTR:
作者:
作者单位:

武汉纺织大学 电子与电气工程学院,武汉 430200

作者简介:

通讯作者:

E-mail: 2022048@wtu.edu.cn.

中图分类号:

TP391

基金项目:

国家自然科学基金项目(61701174);江西省主要学科学术和技术带头人培养计划——领军人才项目(20204BCJ22014).


Pollutant concentration forecast based on multiscale spatiotemporal graph neural network
Author:
Affiliation:

School of Electronic and Electrical Engineering,Wuhan Textile University,Wuhan 430200,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于深度学习的细粒度污染物浓度预测是一种新兴且具有前景的方法,如何充分利用气象、空间和时间等3大信息是其关键.为了协同融合3大信息,提出一种基于多尺度时空图神经网络的污染物浓度预测模型.该模型利用空气质量模型动态构建多尺度的时空图神经网络,学习污染物之间的动态时空关系.具体为:利用图神经网络学习污染物之间的多尺度空间关系,采用空气质量模型HYSPLIT构建图的结点和边属性,通过基于注意力机制的GRU(gate recurrent unit)学习污染物浓度之间的时序关系.该模型不仅充分考虑了气象、空间和时间3大影响因素,还将3个因素联动起来统一到一个框架内协同学习.该方法与传统的机理模型方法相比具有灵活部署、易于实施的特点.实际项目数据集和公开数据集上的实验表明:与现有先进的基于图神经网络的方法相比,该方法预测的污染物浓度平均绝对误差降低了0.6左右,对称平均绝对百分比误差降低0.005左右.

    Abstract:

    Fine-grained pollutant concentration forecast based on deep learning is a new and promising method, and how to make full use of meteorological, spatial and temporal information is the key point. In order to cooperatively fuse the three pieces of information, we propose a pollutant concentration forecasting model based on a multiscale spatiotemporal graph neural network. This model uses the air quality model to dynamically construct the multiscale spatiotemporal graph neural network to learn the dynamic spatiotemporal relationship between pollutants. Specifically, the graph neural network is used to learn the multiscale spatial relationship between pollutants, the air quality model hybrid single-particle lagrangian integrated trajectory(HYSPLIT) is used to construct the node and edge attributes of the graph, and the attention mechanism-based gate recurret unit(GRU) is used to learn the temporal relationship between pollutant concentrations. The model not only fully considers the three influencing factors of meteorology, space and time, but also integrates the three factors into a framework for collaborative learning. Compared with the traditional mechanism model methods, the proposed method has the characteristics of flexible deployment and easy implementation. Experiments on real project datasets and public databases show that the mean absolute error of pollutant concentration is reduced by about 0.6 and the symmetric mean absolute percentage error is reduced by about 4% compared with the existing advanced method based on graph neural networks.

    参考文献
    相似文献
    引证文献
引用本文

廖海斌,袁理,龚颢巍.基于多尺度时空图神经网络的污染物浓度预测[J].控制与决策,2024,39(4):1396-1402

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-15
  • 出版日期: 2024-04-20
文章二维码