基于VMD-CNN的高噪声动态生产过程质量异常监控
作者:
作者单位:

1. 郑州大学 商学院,郑州 450001;2. 郑州大学 管理学院,郑州 450001

通讯作者:

E-mail: zz-wn@zzu.edu.cn.

中图分类号:

TP391.4;TH165+.3

基金项目:

国家自然科学基金重点项目(U1904211);国家社会科学基金项目(20BTJ059);河南省高等学校青年骨干教师培养专项资金项目(2021GGJS006);河南省高校哲学社会科学创新人才支持项目(22HASTIT022);郑州大学精尖学科支持项目(XKLMJX202201).


Abnormal quality monitoring for strong noise dynamic process based on VMD-CNN
Author:
Affiliation:

1. Business of School,Zhengzhou University,Zhengzhou 450001,China;2. School of Management,Zhengzhou University,Zhengzhou 450001,China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对由智能制造现场动态生产过程的复杂随机因素影响造成的高噪声和质量异常监控方法效率低等问题,将变分模态分解方法(variational mode decomposition,VMD)与深度卷积神经网络(convolutional neural network,CNN)相结合,提出一种基于VMD-CNN的实时质量监控新方法.首先,利用VMD方法,将高噪声动态过程原始数据分解为包含质量异常特征和噪声信息的两类本征模态函数,通过去除噪声数据的本征模态函数,消除动态生产过程的高噪声干扰;进而,采用灰度变换将保留原始质量异常特征的本征模型函数转化为质量异常图像,构建VMD-CNN模型对质量异常图像进行识别,并提出基于VMD-CNN的高噪声动态过程质量异常实时监控框架;最后,通过实验验证所提方法的有效性,并与小波去噪方法和CNN识别模型进行对比分析,实验结果显示所提方法的识别精确度显著优于现有的动态过程质量异常监控方法.

    Abstract:

    For the problems of strong noise and low quality abnormal monitoring efficiency in dynamic process of intelligent manufacturing scene, the real-time abnormal quality monitoring method is proposed by combining the variational mode decomposition(VMD) and deep convolutional neural network(CNN). Firstly, the VMD is used to divide the original data into two kinds of intrinsic model functions which reflect the quality abnormal characteristics and noise data. By removing the noise intrinsic model function, strong noise is disposed in the dynamic production process. Furthermore, the intrinsic model functions that retain the original quality abnormal features are transformed into quality abnormal images by gray level transformation, and the VMD-CNN model is constructed to identify the images to monitor dynamic abnormal quality process. Finally, the simulation experiments are used to compare and analysis the CNN, wavelet denoising reconstruction and the proposed method. Results show that the performance of the proposed method is significantly better than the existing dynamic process abnormal quality monitoring methods.

    参考文献
    [1] Liu J F, Cao X W, Zhou H G, et al.A digital twin-driven approach towards traceability and dynamic control for processing quality[J].Advanced Engineering Informatics, 2021, 50: 101395.
    [2] Zhang M Q, Luo X L.Modified canonical variate analysis based on dynamic kernel decomposition for dynamic nonlinear process quality monitoring[J].ISA Transactions, 2021, 108: 106-120.
    [3] 刘玉敏, 周昊飞.基于小波重构与SVM-BPNN的动态过程在线智能监控[J].系统工程理论与实践, 2016, 36(7): 1890-1897. (Liu Y M, Zhou H F.On-line intelligent monitoring of dynamic process based on wavelet reconstruction and SVM-BPNN[J].System Engineering---Theory & Practice, 2016, 36(7): 1890-1897.)
    [4] 周昊飞, 刘玉敏.基于小波重构的动态过程LSSVM- BPNN在线智能监控模型[J].系统管理学报, 2018, 27(2): 291-298. (Zhou H F, Liu Y M.LSSVM-BPNN online intelligent monitoring model for dynamic process based on wavelet reconstruction[J].Journal of Systems & Management, 2018, 27(2): 291-298.)
    [5] Shahdoosti H R, Hazavei S M.Image denoising in dual contourlet domain using hidden Markov tree models[J].Digital Signal Processing, 2017, 67: 17-29.
    [6] 彭开香, 张丽敏.基于核典型相关性-熵成分分析的工业过程质量监测方法[J].控制与决策, 2021, 36(12): 2999-3006. (Peng K X, Zhang L M.A quality monitoring method for industrial process based on kernel canonical correlation-entropy component analysis[J].Control and Decision, 2021, 36(12): 2999-3006.)
    [7] Huang J, Yan X F.Related and independent variable fault detection based on KPCA and SVDD[J].Journal of Process Control, 2016, 39(2): 88-99.
    [8] 李庆华, 陈家益, 潘丰, 等.基于t分布噪声的鲁棒PPLS回归模型[J].系统工程理论与实践, 2018, 38(9): 2416-2423. (Li Q H, Chen J Y , Pan F, et al.Robust PPLS regression modeling[J].System Engineering---Theory & Practice, 2018, 38(9): 2416-2423.)
    [9] 姚家琪, 荆华, 赵春晖.一种面向噪声环境中旋转机械故障诊断的多模态耦合输入神经网络[J].控制与决策, DOI: 10.13195/j.kzyjc.2021.1851. (Yao J Q, Jin H, Zhao C H.A multimode coupled input neural network for rotating machinery fault diagnosis in the noisy environment[J].Control and Decision, DOI: 10.13195/j.kzyjc.2021.1851.)
    [10] 马愈昭, 刘逵, 张岩峰, 等.CEEMD结合改进小波阈值的激光雷达信号去噪算法[J].系统工程与电子技术, https://kns.cnki.net/ kcms/ detail/ 11.2422.TN.20211215.0948.018.html. (Ma Y Z, Liu K, Zhang Y F, et al.Laser radar signal denoising method based on CEEMD and new wavelet threshold[J].Systems Engineering and Electronics, https://kns.cnki.net/ kcms/ detail/ 11.2422.TN.20211215.0948.018.html.)
    [11] Yin C, Wang Y L, Ma G C, et al.Weak fault feature extraction of rolling bearings based on improved ensemble noise-reconstructed EMD and adaptive threshold denoising[J].Mechanical Systems and Signal Processing, 2022, 171: 108834.
    [12] Yang C L, Sutrisno H.Reducing response delay in multivariate process monitoring by a stacked long-short term memory network and real-time contrasts[J].Computers & Industrial Engineering, 2021, 153: 107052.
    [13] Dragomiretskiy K, Zosso D.Variational mode decomposition[J].IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
    [14] Dibaj A, Ettefagh M M, Hassannejad R, et al.A hybrid fine-tuned VMD and CNN scheme for untrained compound fault diagnosis of rotating machinery with unequal-severity faults[J].Expert Systems with Applications, 2021, 167: 114094.
    [15] Abell J A, Chakraborty D, Escobar C A, et al.Big data-driven manufacturing---Process monitoring-for- quality philosophy[J].Journal of Manufacturing Science and Engineering, 2017, 139(10): 101009.
    [16] Farahani S, Xu B, Filipi Z, et al.A machine learning approach to quality monitoring of injection molding process using regression models[J].International Journal of Computer Integrated Manufacturing, 2021, 34(11): 1223-1236.
    [17] Ismail M, Mostafa N A, El-assal A.Quality monitoring in multistage manufacturing systems by using machine learning techniques[J].Journal of Intelligent Manufacturing, 2022, 33(8): 2471-2486.
    [18] 房鑫洋, 张洁, 吕佑龙, 等.基于Attention-BLSTM的复杂产品制造质量预测方法[J].计算机集成制造系统, http://kns.cnki.net/kcms/detail/11.5946.TP.20211126.18 17.008.html. (Fang Y Y, Zhang J, Lv Y L, et al.Attention-BLSTM- based quality prediction for complex products[J].Journal of Systems and Management, http://kns.cnki.net/kcms/detail/11.5946.TP.20211126.1817.008.html.)
    [19] Liu Y M, Zhou H F, Tsung F, et al.Real-time quality monitoring and diagnosis for manufacturing process profiles based on deep belief networks[J].Computers & Industrial Engineering, 2019, 136(7): 494-503.
    [20] Wang K, Yuan X F, Chen J, et al.Supervised and semi-supervised probabilistic learning with deep neural networks for concurrent process-quality monitoring[J].Neural Networks, 2021, 136(4): 54-62.
    [21] Gonzalez-Val C, Pallas A, Panadeiro V, et al.A convolutional approach to quality monitoring for laser manufacturing[J].Journal of Intelligent Manufacturing, 2020, 31(3): 789-795.
    [22] 赵哲耘, 刘玉敏, 王宁.基于改进卷积神经网络的动态过程质量异常模式识别[J].工业工程与管理, 2021, 26(4): 69-76. (Zhao Z Y, Liu Y M, Wang N.Dynamic process quality abnormal pattern recognition based on improved convolutional neural network[J].Industrial Engineering and Management, 2021, 26(4): 69-76.)
    [23] Zhao Q, Han T, Jiang D X, et al.Application of variational mode decomposition to feature isolation and diagnosis in a wind turbine[J].Journal of Vibration Engineering & Technologies, 2019, 7(6): 639-646.
    [24] 王冉, 后麒麟, 石如玉, 等.基于变分模态分解与集成深度模型的锂电池剩余寿命预测方法[J].仪器仪表学报, 2021, 42(4): 111-120. (Wang R, Hou Q L, Shi R Y, et al.Remaining useful life prediction method of lithium battery based on variational mode decomposition and integrated deep model[J].Chinese Journal of Scientific Instrument, 2021, 42(4): 111-120.)
    [25] 罗亦泳.基于变分模态分解与相关向量机的变形特征提取及智能分析研究[J].测绘学报, 2021, 50(7): 991. (Luo Y Y.Feature extraction and intelligent analysis of deformation based on variational mode decomposition and relevant vector machine[J].Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 991.)
    [26] Pang B, Nazari M, Tang G J.Recursive variational mode extraction and its application in rolling bearing fault diagnosis[J].Mechanical Systems and Signal Processing, 2022, 165: 108321.
    [27] Li T R, Lu S X, Xu E J.Location detection method of detector in pipeline using VMD algorithm and machine learning classifier[J].Electronics, 2021, 10(12): 1436-1447.
    [28] Paing M P, Tungjitkusolmun S, Bui T H, et al.Automated segmentation of infarct lesions in T1-weighted MRI scans using variational mode decomposition and deep Learning[J].Sensors, 2021, 21(6): 1952-1971.
    [29] Li R H, Luo J, Hu B.Lamb wave-based damage localization feature enhancement and extraction method for stator insulation of large generators using VMD and wavelet transform[J].Sensors, 2020, 20(15): 4205-4220.
    [30] 李华, 刘韬, 伍星, 等.相关奇异值比的SVD在轴承故障诊断中的应用[J].机械工程学报, 2021, 57(21): 138-149. (Li H, Liu T, Wu X, et al.Application of SVD based on correlation singular value ratio in bearing fault diagnosis[J].Journal of Mechanical Engineering, 2021, 57(21): 138-149.)
    [31] 罗小燕, 卢文海, 游义平, 等.基于VMD和SVD联合降噪方法的球磨机振动信号随机噪声压制[J].噪声与振动控制, 2019, 39(6): 169-175. (Luo X Y, Lu W H, You Y P, et al.A method for ball mill vibration signal random noise suppression based on VMD and SVD[J].Noise and Vibration Control, 2019, 39(6): 169-175.)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘玉敏,王德园,王宁,等.基于VMD-CNN的高噪声动态生产过程质量异常监控[J].控制与决策,2024,39(5):1595-1603

复制
分享
文章指标
  • 点击次数:96
  • 下载次数: 402
  • HTML阅读次数: 315
  • 引用次数: 0
历史
  • 在线发布日期: 2024-04-17
  • 出版日期: 2024-05-20
文章二维码