一种用于旋转机械故障特征提取的簇紧凑自编码器
CSTR:
作者:
作者单位:

1. 合肥工业大学 电气与自动化工程学院,合肥 230009;\hspace{3pt};2. 西安交通大学 自动化科学与工程学院,西安 710049

作者简介:

通讯作者:

E-mail: zbchu@hfut.edu.cn.

中图分类号:

TP206

基金项目:

中央高校基本科研业务费专项资金项目(JZ2023HGQA0108,JZ2023HGTA0200);国家自然科学基金面上项目(62073114,11971032);安徽省科技重大专项项目(202103a05020001).


A cluster compact auto-encoder for rotating machinery fault feature extraction
Author:
Affiliation:

1. School of Electrical Engineering and Automation,Hefei University of Technology,Hefei 230009,China;2. School of Automation Science and Engineering,Xián Jiaotong University,Xián 710049,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统自编码器以无监督方式学习特征、缺乏监督信息的指导造成特征判别性弱的问题,提出一种簇紧凑自编码器(cluster compact auto-encoder,CCAE).首先,利用模糊C均值算法对样本进行聚类得到伪标签,并通过PBMF指标确定最佳聚类数;然后,利用伪标签构建簇紧凑正则项,嵌入样本所属类别的判别性信息;最后,将簇紧凑正则项与标准自编码器的损失函数相结合作为CCAE的损失函数,所提出的CCAE通过伪标签的方式嵌入区分类别的判别性信息,可增强特征的判别性,从而显著提升诊断性能;最后,在旋转机械齿轮和轴承数据集上验证所提出方法的有效性,结果表明,CCAE可广泛用于旋转机械故障诊断的特征提取阶段,为工程人员实现判别性特征的自动提取提供一种解决方案.

    Abstract:

    To deal with the problem that features learned by a traditional auto-encoder(AE) are less discriminative due to unsupervised manner, we propose a cluster compact auto-encoder(CCAE). First of all, a fuzzy C-means algorithm is used to cluster samples to get pseudo labels, where the optimal number of clusters is determined by the PBMF index. Then, a cluster compact regularization(CCR) is established based on the pseudo labels, which embeds discriminant information indicating categories of samples. Finally, the CCR is combined with the AE to constitute the CCAE's loss function. Discriminant ability of the proposed method can be enhanced via the pseudo labels that incorporate discriminant information indicating categories, so as to improve the diagnostic performance greatly. The effectiveness of the proposed method is verified on rotating machinery gear and bearing datasets. The proposed CCAE can be widely applicable to the feature extraction stage of rotating machinery fault diagnosis, which provides a solution for engineers to realize automatic extraction of discriminative features.

    参考文献
    相似文献
    引证文献
引用本文

张志强,储昭碧,陈立平,等.一种用于旋转机械故障特征提取的簇紧凑自编码器[J].控制与决策,2024,39(7):2251-2258

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-06
  • 出版日期: 2024-07-20
文章二维码