基于数据滤波的随机梯度辨识方法
作者:
作者单位:

江南大学 物联网工程学院,江苏 无锡 214122

通讯作者:

E-mail: fding@jiangnan.edu.cn.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(62273167).


Filtering-based stochastic gradient identification methods
Author:
Affiliation:

School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对有色噪声干扰下的随机系统,利用数据滤波技术,对输入输出数据进行滤波,将具有滑动平均噪声的原始系统转换为白噪声干扰下的系统,提出有限脉冲响应滑动平均系统的滤波增广随机梯度算法,并对该算法进行收敛性分析.此外,为了提高参数估计的精度和加快算法的收敛速度,使用多新息辨识理论提出滤波多新息增广随机梯度算法,并分析其收敛性.与增广随机梯度算法相比,所提出的滤波增广随机梯度算法和滤波多新息增广随机梯度算法可以得到更高精度的参数估计.最后,通过仿真实例表明了所提出算法的有效性.

    Abstract:

    This paper studies the parameter identification of stochastic systems with colored noises. Using the data filtering technology to filter the input and output data, which converts the original system with moving average noise to the system with white noise, we propose the filtering-based extended stochastic gradient algorithm and analyze its convergence. In addition, in order to improve the parameter estimation accuracy and accelerate the convergence rate, a filtering-based multi-innovation extended stochastic gradient algorithm is proposed by using the multi-innovation identification theory and its convergence is analyzed. Compared with the extended stochastic gradient algorithm, the proposed filtering-based extended stochastic gradient algorithm and the filtering-based multi-innovation extended stochastic gradient algorithm can obtain higher precision parameter estimates. Finally, the simulation results indicate that the proposed algorithms are effective.

    参考文献
    [1] 初蕾, 朱善良, 王明新, 等.具有有限时间输出约束的切换非线性时滞系统的多维泰勒网自适应控制[J].控制与决策, 2022, 37(2): 361-369.(Chu L, Zhu S L, Wang M X, et al.Multi-dimensional Taylor network adaptive control for switched time-delay systems with finite-time output constraints[J].Control and Decision, 2022, 37(2): 361-369.)
    [2] 蔡赛男, 宋卫星, 班利明, 等.基于鲸鱼算法优化LSSVM的滚动轴承故障诊断[J].控制与决策, 2022, 37(1): 230-236.(Cai S N, Song W X, Ban L M, et al.Fault diagnosis method of rolling bearing based on LSSVM optimized by whale optimization algorithm[J].Control and Decision, 2022, 37(1): 230-236.)
    [3] 王印松, 孙天舒.一种基于证据融合的执行器故障诊断方法[J].控制与决策, 2022, 37(8): 2026-2032.(Wang Y S, Sun T S.A method of actuator fault diagnosis based on evidence fusion[J].Control and Decision, 2022, 37(8): 2026-2032.)
    [4] 张霄, 丁锋.双线性状态空间系统的状态观测器设 计[J].控制与决策, 2023, 38(1): 274-280.(Zhang X, Ding F.State observers for bilinear state-space systems[J].Control and Decision, 2023, 38(1): 274-280.)
    [5] Wahlberg B, Ljung L.Algorithms and performance analysis for stochastic Wiener system identification[J].IEEE Control Systems Letters, 2018, 2(3): 471-476.
    [6] Wang T, Hu M, Zhao Y L.Adaptive tracking control of FIR systems under binary-valued observations and recursive projection identification[J].IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(9): 5289-5299.
    [7] Münker T, Nelles O.Nonlinear system identification with regularized local FIR model networks[J].Engineering Applications of Artificial Intelligence, 2018, 67: 345-354.
    [8] Tao T Y, Wang B, Wang X H.Parameter and time delay estimation algorithm based on gradient pursuit for multi-input C-ARMA systems[J].Control and Decision, 2022, 37(8): 2085-2090.
    [9] Fan S J, Xu L, Ding F, et al.Correlation analysis-based stochastic gradient and least squares identification methods for errors-in-variables systems using the multiinnovation[J].International Journal of Control, Automation and Systems, 2021, 19(1): 289-300.
    [10] Fan Y M, Liu X M.Data filtering-based multi-innovation forgetting gradient algorithms for input nonlinear FIR-MA systems with piecewise-linear characteristics[J].Journal of the Franklin Institute, 2021, 358(18): 9818-9840.
    [11] Ma P, Wang L.Filtering-based recursive least squares estimation approaches for multivariate equation-error systems by using the multiinnovation theory[J].International Journal of Adaptive Control and Signal Processing, 2021, 35(9): 1898-1915.
    [12] 丁锋.系统辨识: 多新息辨识理论与方法[M].北京: 科学出版社, 2016.(Ding F.System identification: Theory and method of multi-innovation identification[M].Beijing: Science Press, 2016.)
    [13] Liu S Y, Zhang Y L, Xu L, et al.Extended gradient-based iterative algorithm for bilinear state-space systems with moving average noises by using the filtering technique[J].International Journal of Control, Automation and Systems, 2021, 19(4): 1597-1606.
    [14] Wang D Q.Least Squares-based recursive and iterative estimation for output error moving average systems using data filtering[J].IET Control Theory & Applications, 2011, 5(14): 1648-1657.
    [15] 丁锋.系统辨识-辨识方法性能分析[M].北京: 科学出版社, 2014.(Ding F.Performance analysis of system identification-identification method[M].Beijing: Science Press, 2014.)}
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

丁锋,郑嘉芸,张霄,等.基于数据滤波的随机梯度辨识方法[J].控制与决策,2024,39(7):2259-2266

复制
分享
文章指标
  • 点击次数:97
  • 下载次数: 591
  • HTML阅读次数: 563
  • 引用次数: 0
历史
  • 在线发布日期: 2024-06-06
  • 出版日期: 2024-07-20
文章二维码