This paper studies the parameter identification of stochastic systems with colored noises. Using the data filtering technology to filter the input and output data, which converts the original system with moving average noise to the system with white noise, we propose the filtering-based extended stochastic gradient algorithm and analyze its convergence. In addition, in order to improve the parameter estimation accuracy and accelerate the convergence rate, a filtering-based multi-innovation extended stochastic gradient algorithm is proposed by using the multi-innovation identification theory and its convergence is analyzed. Compared with the extended stochastic gradient algorithm, the proposed filtering-based extended stochastic gradient algorithm and the filtering-based multi-innovation extended stochastic gradient algorithm can obtain higher precision parameter estimates. Finally, the simulation results indicate that the proposed algorithms are effective.
[1] 初蕾, 朱善良, 王明新, 等.具有有限时间输出约束的切换非线性时滞系统的多维泰勒网自适应控制[J].控制与决策, 2022, 37(2): 361-369.(Chu L, Zhu S L, Wang M X, et al.Multi-dimensional Taylor network adaptive control for switched time-delay systems with finite-time output constraints[J].Control and Decision, 2022, 37(2): 361-369.)
[2] 蔡赛男, 宋卫星, 班利明, 等.基于鲸鱼算法优化LSSVM的滚动轴承故障诊断[J].控制与决策, 2022, 37(1): 230-236.(Cai S N, Song W X, Ban L M, et al.Fault diagnosis method of rolling bearing based on LSSVM optimized by whale optimization algorithm[J].Control and Decision, 2022, 37(1): 230-236.)
[3] 王印松, 孙天舒.一种基于证据融合的执行器故障诊断方法[J].控制与决策, 2022, 37(8): 2026-2032.(Wang Y S, Sun T S.A method of actuator fault diagnosis based on evidence fusion[J].Control and Decision, 2022, 37(8): 2026-2032.)
[4] 张霄, 丁锋.双线性状态空间系统的状态观测器设 计[J].控制与决策, 2023, 38(1): 274-280.(Zhang X, Ding F.State observers for bilinear state-space systems[J].Control and Decision, 2023, 38(1): 274-280.)
[5] Wahlberg B, Ljung L.Algorithms and performance analysis for stochastic Wiener system identification[J].IEEE Control Systems Letters, 2018, 2(3): 471-476.
[6] Wang T, Hu M, Zhao Y L.Adaptive tracking control of FIR systems under binary-valued observations and recursive projection identification[J].IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(9): 5289-5299.
[7] Münker T, Nelles O.Nonlinear system identification with regularized local FIR model networks[J].Engineering Applications of Artificial Intelligence, 2018, 67: 345-354.
[8] Tao T Y, Wang B, Wang X H.Parameter and time delay estimation algorithm based on gradient pursuit for multi-input C-ARMA systems[J].Control and Decision, 2022, 37(8): 2085-2090.
[9] Fan S J, Xu L, Ding F, et al.Correlation analysis-based stochastic gradient and least squares identification methods for errors-in-variables systems using the multiinnovation[J].International Journal of Control, Automation and Systems, 2021, 19(1): 289-300.
[10] Fan Y M, Liu X M.Data filtering-based multi-innovation forgetting gradient algorithms for input nonlinear FIR-MA systems with piecewise-linear characteristics[J].Journal of the Franklin Institute, 2021, 358(18): 9818-9840.
[11] Ma P, Wang L.Filtering-based recursive least squares estimation approaches for multivariate equation-error systems by using the multiinnovation theory[J].International Journal of Adaptive Control and Signal Processing, 2021, 35(9): 1898-1915.
[12] 丁锋.系统辨识: 多新息辨识理论与方法[M].北京: 科学出版社, 2016.(Ding F.System identification: Theory and method of multi-innovation identification[M].Beijing: Science Press, 2016.)
[13] Liu S Y, Zhang Y L, Xu L, et al.Extended gradient-based iterative algorithm for bilinear state-space systems with moving average noises by using the filtering technique[J].International Journal of Control, Automation and Systems, 2021, 19(4): 1597-1606.
[14] Wang D Q.Least Squares-based recursive and iterative estimation for output error moving average systems using data filtering[J].IET Control Theory & Applications, 2011, 5(14): 1648-1657.
[15] 丁锋.系统辨识-辨识方法性能分析[M].北京: 科学出版社, 2014.(Ding F.Performance analysis of system identification-identification method[M].Beijing: Science Press, 2014.)}