基于结构重参数化的红外与可见光图像融合
CSTR:
作者:
作者单位:

1. 昆明理工大学 信息工程与自动化学院,昆明 650500;2. 昆明理工大学 现代农业工程学院,昆明 650500

作者简介:

通讯作者:

E-mail: qingchen233@foxmail.com.

中图分类号:

TP391

基金项目:


Infrared and visible image fusion based on structural re-parameterization
Author:
Affiliation:

1. Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China;2. Faculty of Modern Agricultural Engineering,Kunming University of Science and Technology,Kunming 650500,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    红外与可见光图像融合的目的是通过将不同模态的互补信息融合来增强源图像中的细节场景信息,然而,现有的深度学习方法存在融合性能与计算资源消耗不平衡的问题,并且会忽略红外图像存在噪声的问题.对此,提出一种基于结构重参数化的红外与可见光图像融合算法.首先,通过带权重共享的双分支残差连接型网络分别对两种源图像进行特征提取,分别得到的特征级联后图像重建;然后,用结构相似性损失与双边滤波去噪的内容损失联合指导网络的训练;最后,在训练完成后进行结构重参数化将训练网络优化成直连型网络.在多个公共数据集上与7种领先的深度学习融合算法进行了定性与定量的实验对比,所提出的融合算法在更低的资源耗费下能够实现多个评价指标的提升,融合结果具有更丰富的场景信息、更强的对比度以及更符合人眼的视觉效果.

    Abstract:

    The purpose of infrared and visible image fusion is to enhance the detailed scene information in the source image by fusing the complementary information of different modalities. However, the existing deep learning methods have the problem of unbalanced fusion performance and computing resource consumption, and ignore the problem of noise in infrared images. Aiming at these two problems, this paper proposes an infrared and visible image fusion algorithm based on structural reparameterization. Firstly, the algorithm performs feature extraction on the two source images through a two-branch residual connection network with weight sharing, and the obtained features are cascaded to reconstruct the images. Then, the structural similarity loss and the content loss with bilateral filtering denoising are used to jointly guide the training of the network. Finally, after the training is completed, the structure reparameterization is performed to optimize the training network into a direct connection network. Qualitative and quantitative experiments are compared with seven leading deep learning fusion algorithms on multiple public data sets. The proposed fusion algorithm achieves the improvement of multiple evaluation indicators with lower resource consumption. The fusion results have richer scene information, stronger contrast and more in line with the visual effect of the human eye.

    参考文献
    相似文献
    引证文献
引用本文

陈昭宇,范洪博,马美燕,等.基于结构重参数化的红外与可见光图像融合[J].控制与决策,2024,39(7):2275-2283

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-06
  • 出版日期: 2024-07-20
文章二维码