复杂时空域下多维度智能车间数据的关联网络建模
作者:
作者单位:

1. 昆明理工大学 机电工程学院,昆明 650500;2. 云南中烟工业有限责任公司 技术中心,昆明 650231

通讯作者:

E-mail: yinyc@163.com.

中图分类号:

TP391

基金项目:

国家自然科学基金项目(52065033);云南省重大科技项目(202202AG050002).


Association network modeling of multi-dimensional intelligent workshop data in complex spatio-temporal domain
Author:
Affiliation:

1. Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650500,China;2. Technology Center,China Tobacco Yunnan Industrial Co.,Ltd,Kunming 650231,China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    智能车间生产数据的多工序、跨流程、异构多态的特性加剧了生产过程中工艺数据关联融合问题的复杂性.面向复杂时空域下多维多尺度车间数据,提出一种基于时序聚类-关联挖掘-复杂网络的深度融合建模方法.首先,通过高斯核函数与一维卷积运算描述车间数据的聚类特征,采用欧氏距离度量车间时序数据特征向量间的相似性,并将处理后的时序特征引入聚类分析中;其次,通过时序数据关联规则提取各工艺参数之间蕴含的内在规律和关联关系,采用支持度与置信度完成关联规则的深度挖掘;然后,依据车间跨流程多工序协同运行特点,构建以多工序的工艺参数为节点、关联关系为边的带时间窗的生产工艺过程双权重有向多层网络模型,为车间跨流程、多工序、异构多态的工艺指标间的复杂关联关系的描述提供依据;最后,以某制丝生产线质量调控为例,对所提出方法的有效性和适用性进行验证.

    Abstract:

    The multi-process, cross-process, and heterogeneous and polymorphic characteristics of production data in smart workshops exacerbate the complexity of the process data association and fusion problem in the production process. In this study, a deep fusion modeling method that integrates time series clustering, association mining and complex network based on multi-dimensional and multi-scale workshop data in complex spatio-temporal domain is proposed. First, the Gaussian kernel function and one-dimensional convolution operation are used to describe the clustering characteristics of the workshop data, the Euclidean distance is used to calculate the similarity between the feature vectors of the workshop time series data, and the processed time series characteristics are introduced into the cluster analysis. Then, the inherent laws and correlations between the process parameters are extracted through the correlation rules of time series data, and the calculation of support and confidence are used to complete the in-depth mining of the association rules. On this basis, according to the characteristics of cross-process and multi-process collaborative operation in the workshop, a two-weight directed multi-layer network model of the production process with time windows with the process parameters of the multi-process as the node and the correlation as the edge is constructed, which provides a basis for the description of the complex relationship between the process indicators of the workshop across processes, multiple processes and heterogeneous polymorphism. Finally, a certain tobacco production line quality control is taken as an example to verify the validity and applicability of the proposed method.

    参考文献
    [1] 张洁, 盛夏, 张朋, 等.面向制造过程数据的两阶段无监督特征选择方法[J].机械工程学报, 2019, 55(17): 133-144.(Zhang J, Sheng X, Zhang P, et al.Two-stage unsupervised feature selection method oriented to manufacturing procedural data[J].Journal of Mechanical Engineering, 2019, 55(17): 133-144.)
    [2] 左延红, 程桦, 张克仁.基于分数阶偏微分的离散制造系统检测数据融合算法[J].计算机集成制造系统, 2015, 21(12): 3256-3262.(Zuo Y H, Cheng H, Zhang K R.Fusion algorithm of discrete manufacturing system detection data based on fractional partial differential[J].Computer Integrated Manufacturing Systems, 2015, 21(12): 3256-3262.)
    [3] Fang W G, Guo Y, Liao W H, et al.The spatio-temporal modeling and integration of manufacturing big data in job shop: An ontology-based approach[C].IEEE the 7th International Conference on Industrial Engineering and Applications.Bangkok, 2020: 394-398.
    [4] 璩晶磊, 李少波, 陈金坤.基于质量数据融合及规则挖掘的离散制造过程监控方法[J].计算机集成制造系统, 2017, 23(9): 1962-1971.(Qu J L, Li S B, Chen J K.Process monitoring method in discrete manufacturing based on quality data fusion and rule mining[J].Computer Integrated Manufacturing Systems, 2017, 23(9): 1962-1971.)
    [5] Yuan M H, Deng K, Chaovalitwongse W A, et al.Research on technologies and application of data mining for cloud manufacturing resource services[J].The International Journal of Advanced Manufacturing Technology, 2018, 99(5): 1061-1075.
    [6] 高贵兵, 荣涛, 岳文辉.基于复杂网络的制造系统脆弱性综合评估方法[J].计算机集成制造系统, 2018, 24(9): 2288-2296. (Gao G B, Rong T, Yue W H.Vulnerability assessment method for manufacturing system based on complex network[J].Computer Integrated Manufacturing Systems, 2018, 24(9): 2288-2296.)
    [7] Zhu F, Wang R G, Wang C.Intelligent workshop bottleneck prediction based on complex network[C].2019 IEEE International Conference on Mechatronics and Automation.Tianjin, 2019: 1682-1686.
    [8] Bonacina F, Miele E S, Corsini A.Time series clustering: A complex network-based approach for feature selection in multi-sensor data[J].Modelling, 2020, 1(1): 1-21.
    [9] Funke T, Becker T.Complex networks of material flow in manufacturing and logistics: Modeling, analysis, and prediction using stochastic block models[J].Journal of Manufacturing Systems, 2020, 56: 296-311.
    [10] Shi X Q, Long W, Li Y Y, et al.Research on the performance of multi-population genetic algorithms with different complex network structures[J].Soft Computing, 2020, 24(17): 13441-13459.
    [11] Lowe D G.Distinctive image features from scale- invariant keypoints[J].International Journal of Computer Vision, 2004, 60(2): 91-110.
    [12] Gao J H, Ji W X, Zhang L L, et al.Fast piecewise polynomial fitting of time-series data for streaming computing[J].IEEE Access, 2020, 8: 43764-43775.
    [13] Wang D J, Yu W, Zou X F.Tensor-based mathematical framework and new centralities for temporal multilayer networks[J].Information Sciences, 2020, 512: 563-580.
    [14] Watts D J, Strogatz S H.Collective dynamics of ‘small-world’ networks[J].Nature, 1998, 393(6684): 440-442.
    [15] 陈超洋, 周勇, 池明, 等.基于复杂网络理论的大电网脆弱性研究综述[J].控制与决策, 2022, 37(4): 782-798.(Chen C Y, Zhou Y, Chi M, et al.Review of large power grid vulnerability based on complex network theory[J].Control and Decision, 2022, 37(4): 782-798.)
    [16] 李明慧, 卢鹄.尺寸公差的工艺能力指数评价方 法[J].南京航空航天大学学报, 2012, 44(B04): 42-47.(Li M H, Lu H.Process capability index of dimension tolerance evaluation[J].Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(B04): 42-47.)}
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张万达,阴艳超,顾文娟,等.复杂时空域下多维度智能车间数据的关联网络建模[J].控制与决策,2024,39(7):2284-2294

复制
分享
文章指标
  • 点击次数:133
  • 下载次数: 681
  • HTML阅读次数: 653
  • 引用次数: 0
历史
  • 在线发布日期: 2024-06-06
  • 出版日期: 2024-07-20
文章二维码