基于感知融合的自适应无创呼吸机技术研究
CSTR:
作者:
作者单位:

1. 东北大学 计算机科学与工程学院,沈阳 110167;2. 中铁九局集团电务工程有限公司,沈阳 110013

作者简介:

通讯作者:

E-mail: dengqx@mail.neu.edu.cn.

中图分类号:

TP181

基金项目:

国家自然科学基金项目(62072085).


Research of adaptive non-invasive ventilator technology based on perception fusion
Author:
Affiliation:

1. School of Computer Science and Engineering,Northeastern University,Shenyang 110167,China;2. China Railway No.9 Group Co., Ltd,Shenyang 110013,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着全球老龄化和呼吸系统疾病增加,无创呼吸机使用场景逐渐从医院转向日常家庭,因此迫切需要呼吸机具备更强的自主适应能力,以针对不同病症进行个性化治疗.然而,目前呼吸机产品智能化程度较低,并主要受制于呼吸机对患者呼吸状态的识别能力与针对性调节呼吸机参数的自适应能力.针对以上现状,结合感知融合、深度学习等相关技术,设计并实现一套基于感知融合的无创呼吸机自适应算法.算法包括两个部分:基于深度学习的参数初始化算法和基于深度学习的逐步滴定算法.参数初始化算法根据患者历史呼吸数据,对呼吸机通气模式和参数进行初始化;逐步滴定算法在参数初始化的基础上,通过多种传感器实时检测患者状态参数变化,并根据状态参数对呼吸机进行调节,直至整个治疗环节结束.最后在仿真平台上对所提出的自适应算法进行不同呼吸症状、漏气情况的仿真实验,结果表明所提出算法在分类准确率与回归精度等多个指标上均优于现有同类型工作,有望加快呼吸机智能化进程,为患者提供个性化治疗的可能性.

    Abstract:

    With the global aging population and an increase in respiratory system diseases, the usage scenarios of non-invasive ventilators are gradually shifting from hospitals to everyday homes. Therefore, there is an urgent need for ventilators to possess stronger autonomous adaptive capabilities to provide personalized treatment for different conditions. However, the current level of intelligence in ventilator products is relatively low, mainly constrained by the ventilator's ability to recognize patient respiratory states and its adaptive capacity to adjust ventilator parameters accordingly. In response to this situation, this paper combines technologies such as sensor fusion and deep learning to design and implement a sensor fusion-based adaptive algorithm for non-invasive ventilators. This algorithm consists of two parts: a deep learning-based parameter initialization algorithm and a deep learning-based stepwise titration algorithm. The parameter initialization algorithm initializes the ventilation mode and parameters of the ventilator based on the patient's historical respiratory data. Building upon the parameter initialization, the stepwise titration algorithm monitors real-time changes in patient state parameters through various sensors and adjusts the ventilator based on these state parameters until the entire treatment process is completed. Finally, we conduct simulation experiments on the proposed adaptive algorithm on a simulation platform, simulating different respiratory symptoms and leakage scenarios. The experimental results demonstrate that the adaptive algorithm outperforms existing works of the same type in terms of classification accuracy, precision, recall, and $F_1$ score, which suggests the potential to accelerate the intelligence of ventilators and provide the possibility of personalized treatment for patients.

    参考文献
    相似文献
    引证文献
引用本文

邓子亨,李敏希,沈大伟,等.基于感知融合的自适应无创呼吸机技术研究[J].控制与决策,2024,39(7):2421-2430

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-06
  • 出版日期: 2024-07-20
文章二维码