融合深度特征与多核学习的LSTWSVM及其工业应用
CSTR:
作者:
作者单位:

大连理工大学 控制科学与工程学院,辽宁 大连 116024

作者简介:

通讯作者:

E-mail: lvzheng@dlut.edu.cn.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61873048,62003072);国家科技部重点研发计划项目(2017YFA0700300);中央高校基本科研业务费专项资金项目(DUT22JC16);辽宁省应用基础研究计划项目(2023JH2/101600043).


LSTWSVM fusion of deep feature and multiple kernel learning and its industrial applications
Author:
Affiliation:

School of Control Science and Engineering,Dalian University of Technology,Dalian 116024,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高多核学习(MKL)的表示能力同时降低其计算成本,提出一种融合深度特征与多核学习的最小二乘孪生支持向量机(LSTWSVM)算法.针对支持向量机等核分类器在多核学习中高计算复杂度的问题,提出一种基于边缘错误最小化原则的多核LSTWSVM框架,利用分类器优势提高多核学习的性能.针对高斯多核浅层结构的问题,采用MKL法设计一种基于深度神经网络多层信息的高鲁棒性深度映射核,将此深度核与多尺度高斯基核以核矩阵哈达玛积方式相融合,构造一组新的具有高度表达能力的改进核.最后,将基于LSTWSVM的多核训练算法与改进的多核结构进行高度集成,通过大量基准数据集与工业数据实验表明,其能有效结合深度学习与多核学习的优势,且以较低的计算成本提高分类精度与泛化能力.

    Abstract:

    In order to improve the representation ability of multi-kernel learning and reduce its computational cost, this paper proposes a least squares twin support vector machine(LSTWSVM) algorithm that combines depth feature and multi-kernel learning. Aiming at the problem of high computational complexity of kernel classifiers such as support vector machine in multi-kernel learning, a multi-kernel LSTWSVM framework based on the principle of edge error minimization is proposed. The cost-sensitive learning idea is adopted to improve the performance of multi-kernel learning by using the advantages of classifiers. Aiming at the problem of Gauss multi-kernel shallow structure, a highly robust depth mapping kernel based on depth neural network multi-layer information is designed using the MKL method. The depth kernel and multi-scale Gaussian basis kernel are fused in the form of kernel matrix Hadamard product to construct a new set of improved cores with high expressiveness, which contains the deep feature information of data. Finally, this paper highly integrates the multi-kernel training algorithm based on the LSTWSVM with the improved multi-kernel structure. Through benchmark datasets and industrial experiments, it shows that it can combine the advantages of deep learning and multi-kernel learning, and improve the classification accuracy and generalization ability at a lower computational cost.

    参考文献
    相似文献
    引证文献
引用本文

刘颖,刘德彦,吕政,等.融合深度特征与多核学习的LSTWSVM及其工业应用[J].控制与决策,2024,39(8):2622-2630

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-16
  • 出版日期: 2024-08-20
文章二维码