数据驱动下应急医疗物资需求预测及物流选址-分配优化
CSTR:
作者:
作者单位:

昆明理工大学 管理与经济学院,昆明 650504

作者简介:

通讯作者:

E-mail: kmustlzh@163.com.

中图分类号:

C935

基金项目:

国家自然科学基金项目(71562024,72261022);昆明理工大学哲学社会科学科研创新团队项目(CXTD 2023003).


Data-driven demand forecast for emergency medical supplies and logistics location-allocation optimization
Author:
Affiliation:

School of Management and Economics,Kunming University of Science and Technology,Kunming 650504,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决重大疫情爆发初期应急医疗物资需求量预测及分配问题,结合传染病的特征以及政府隔离措施对传染病传播的影响,建立改进易感-潜伏-感染-康复(SEIR)模型,基于数据驱动的思想对模型中的部分参数进行周期性更新,从而刻画疫情的扩散演化规律,将需求量构建为感染规模的函数,实现应急医疗物资需求量的预测.在此基础上,建立以加权运输距离最小化为目标,公平分配等为约束的选址-分配模型,并设计自适应混合遗传禁忌算法进行求解.实例测算结果表明:数据驱动的参数更新方法保证了改进SEIR模型预测的精度,平均相对误差为3.8%;所提出选址-分配模型在对配送时效性进行优化的同时能够兼顾物资分配的公平性.不同规模算例求解结果表明:所提出算法的收敛性和解的质量优于标准遗传算法.

    Abstract:

    In order to predict the demand for emergency medical supplies at the initial stage of the sudden epidemic and allocate emergency medical supplies. Combined with the characteristics of infectious diseases and the impact of government quarantine measures on the spread of infectious diseases, an improved susceptible-exposed- infected-recovered(SEIR) model is established, and the parameters in the model are periodically updated based on the data-driven idea, so as to characterize the trajectory of epidemic diffusion. The demand is constructed as a function of infection scale to predict the demand for emergency medical supplies. On this basis, a location-allocation mold is established with the goal of minimizing weighted transport distance and constraints such as allocation fairness. And an adaptive hybrid algorithm is designed to solve it, which combines the genetic algorithm and tabu search. The results show that the data driven parameter updating method can guarantee the prediction accuracy of the improved SEIR model with a mean relative error of 3.8%. The proposed location-allocation model can optimize delivery timeliness while also taking into account fairness. The results of different scale examples show that compared with the standard genetic algorithm, the proposed algorithm converges faster and has higher solution quality.

    参考文献
    相似文献
    引证文献
引用本文

罗治洪,李婷.数据驱动下应急医疗物资需求预测及物流选址-分配优化[J].控制与决策,2024,39(9):3117-3125

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-07
  • 出版日期: 2024-09-20
文章二维码