弱纹理场景下无人机边缘化加速定位方法
CSTR:
作者:
作者单位:

1. 大连交通大学 机械工程学院,辽宁 大连 116028;2. 大连市先进机器人感知与控制技术创新中心,辽宁 大连 116028

作者简介:

通讯作者:

E-mail: lironghua705@163.com.

中图分类号:

TP242

基金项目:

国防科技重点实验室基金项目(2022-JCJQ-L8-015-0201);辽宁省教育厅科学研究重点项目(LJKZ0475); 大连市高层次人才创新支持计划项目(2022RJ03).


A localisation approach for UAV marginalisation acceleration in weakly textured scenarios
Author:
Affiliation:

1. College of Mechanical Engineering, Dalian Jiaotong University,Dalian 116028,China;2. Dalian Advanced Robot System Engineering Technology Innovation Center,Dalian 116028,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机在弱纹理场景下定位不准确的问题,提出一种基于边缘化加速的无人机定位方法.参考开源的VINS-Fusion算法架构,首先采用Harris角点算法提取需要优化的角点信息,融合亚像素角点算法对提取的角点信息进行迭代和精度提升,为后端优化线程提供良好的初始值;然后设计一种边缘化加速策略,通过滑窗法筛选出需要优化的视觉残差信息,采用舒尔补方法将筛选出的视觉残差信息转化为先验信息加入优化,拆分边缘化线程并且重构信息矩阵,索引视觉残差信息的行和列,将含有信息较多的矩阵块移至信息矩阵右下角,保留更多的先验信息;最后使用EuRoc数据集进行评估.实验结果表明,与开源的视觉惯导融合的SLAM系统相比,所提出算法在定位精度上得到明显提升,同时可以保证较高的运算效率,满足无人机定位的实时性要求.

    Abstract:

    Aiming at the problem of inaccurate localization of UAVs in weak texture scenarios, we propose a UAV localization method based on edge-based acceleration. Refering to the open-source VINS-Fusion algorithmic architecture, firstly, the Harris corner point algorithm is used to extract information about the corner points that need to be optimized. The fusion of sub-pixel corner point algorithms for iterative and accuracy enhancement of extracted corner point information provides good initial values for back-end optimization threads. Secondly, we design a marginalization acceleration strategy, filtering visual residual information for optimization by sliding window method, using the Schur complement method to transform the filtered visual residual information into a priori information to be added to the optimization, splitting marginalized threads, reconstructing the information matrix, indexing rows and columns of visual residual information, moving the matrix block containing more information to the lower right corner of the information matrix, and retaining more a priori information. Finally, it is evaluated using the EuRoc dataset, and the experimental results show that, compared with the open-source vision-inertial-guidance fusion SLAM system, the proposed algorithm obtains a significant improvement in positioning accuracy, while ensuring high computational efficiency and meeting the real-time requirements of UAV positioning.

    参考文献
    相似文献
    引证文献
引用本文

李荣华,谢辉,韩兴元,等.弱纹理场景下无人机边缘化加速定位方法[J].控制与决策,2024,39(10):3253-3260

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-29
  • 出版日期: 2024-10-20
文章二维码