基于密度交互的集群机器人自组织垃圾收集算法
CSTR:
作者:
作者单位:

西安建筑科技大学 信息与控制工程学院,西安 710311

作者简介:

通讯作者:

E-mail: xiaokanglei@xauat.edu.cn.

中图分类号:

TP242

基金项目:


Self-organized garbage collection algorithm of swarm robots based on density interactions
Author:
Affiliation:

College of Information and Control Engineering,Xián University of Architecture and Technology,Xián 710311,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对实际垃圾收集任务中垃圾常呈非均匀的斑块状分布的问题,提出一种基于密度交互的集群机器人自组织垃圾收集算法.首先,基于高斯核函数建立机器人邻域作业空间中垃圾分布以及邻居分布的空间密度场;然后,在密度信息驱动交互规则作用下,集群机器人通过边缘包围行为实现对垃圾斑块的环型包围;最后,配合面向粗粒度垃圾的平推收缩策略和面向细粒度垃圾的涡旋收缩策略,以群体协作的方式推动垃圾斑块向内聚拢,完成斑块状垃圾的收集任务.数值仿真以及真实集群机器人实验结果表明,所提出收集算法对单斑块、多斑块以及垃圾数量动态变化斑块均具有良好的收集效果,表现出优良的并行作业和自适应性能.

    Abstract:

    In real-life garbage collection tasks, garbage is often distributed in non-uniform patches. To more effectively deal with this patchy garbage, a self-organized collection algorithm for swarm robots based on density interactions is proposed. Firstly, a spatial density field is established to characterize the spatial distribution of garbage and other robots based on the Gaussian kernel function. Secondly, the density field is used to coordinate the collective motion of swarm robots to perform an edge-surrounding behavior in order to encircle the garbage patchy. Finally, in conjunction with the radial shrinkage strategy for coarse-grained garbage and the vortex shrinkage strategy for fine-grained garbage, the scattered garbage is pushed inward in a group collaborative manner by swarm robots, and the collection task of patchy garbage is completed. Numerical simulations and experiments with real swarm robots demonstrate that the proposed garbage collection algorithm is effective for collecting single-patchy garbage, multi-patchy garbage, and dynamic-patchy garbage, showing excellent parallelism and adaptivity.

    参考文献
    相似文献
    引证文献
引用本文

向雅伦,雷小康,段中兴,等.基于密度交互的集群机器人自组织垃圾收集算法[J].控制与决策,2024,39(10):3279-3288

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-29
  • 出版日期: 2024-10-20
文章二维码