切换网络演化博弈的同步
作者:
作者单位:

1. 山东师范大学 商学院, 济南 250014;2. 山东师范大学 动力学与控制科学研究中心, 济南 250014

通讯作者:

E-mail: wyh_1005@163.com.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(62373230,61903236,62073202).


Synchronization of switched networked evolutionary games
Author:
Affiliation:

1. Business School,Shandong Normal University,Ji'nan 250014,China;2. Institute of Dynamics and Control Science,Shandong Normal University,Ji'nan 250014,China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    研究带有切换网络结构的网络演化博弈同步问题.首先,利用矩阵半张量积方法,给出局势演化方程的代数化表达式,并得到一个充分必要的代数条件来验证切换网络演化博弈是否与一个静态网络演化博弈达到同步;然后,通过构造一个辅助系统并使用最大不变子集的方法,将切换网络演化博弈的同步问题转化为辅助系统的集合稳定性,提出一个易于验证的充分必要条件,并给出达到同步时最短时间的计算公式;此外,将所得结果推广到局势受限的情况,提出局部同步的概念,并讨论切换网络演化博弈的局部同步问题;最后,通过实例验证理论结果的有效性.

    Abstract:

    This paper investigates the synchronization problem of networked evolutionary games(NEGs) with switched networked structures. Firstly, the algebraic expression of the strategy profile dynamics is given by using the semi-tensor product(STP) of matrices, and a necessary and sufficient algebraic condition is presented to verify whether a switched NEG is synchronized to a static NEG. Then by constructing an auxiliary system and using the invariant subset-based method, the synchronization problem of switched NEGs can be converted into set stability of the auxiliary system with respect to a given nonempty subset. An easily verifiable necessary and sufficient condition is proposed and the formula is provided to calculate the shortest time. In addition, we extend the obtained results to local synchronization of incomplete-profile switched NEGs. Finally, an illustrative example is given to show the effectiveness of the theoretical results.

    参考文献
    [1] Madeo D, Mocenni C.Game interactions and dynamics on networked populations[J].IEEE Transactions on Automatic Control, 2015, 60(7): 1801-1810.
    [2] Nowak M A, May R M.Evolutionary games and spatial chaos[J].Nature, 1992, 359: 826-829.
    [3] Zhao G D, Wang Y Z.Formulation and optimization control of a class of networked evolutionary games with switched topologies[J].Nonlinear Analysis: Hybrid Systems, 2016, 22: 98-107.
    [4] Zhu R, Chen Z Q, Zhang J L, et al.Strategy optimization of weighted networked evolutionary games with switched topologies and threshold[J].Knowledge-Based Systems, 2022, 235: 107644.
    [5] Cheng D Z, Qi H S, Li Z Q.Analysis and control of boolean networks: A semi-tensor product approach[M].London: Springer, 2011
    [6] Cheng D Z, Qi H S, Zhao Y.An introduction to semi-tensor product of matrices and its applications[M].Hackensack: World Scientific, 2012.
    [7] 冯俊娥, 李怡靓, 赵荣.基于矩阵半张量积的有限值动态系统的最新进展[J].控制与决策, 2022, 37(2): 267-277.(Feng J E, Li Y L, Zhao R.Recent developments of finite-valued dynamic systems based on semi-tensor product of matrices[J].Control and Decision, 2022, 37(2): 267-277.)
    [8] Wang L, Li Y F, Zhu J D.On block-decoupling of Boolean control networks[J].International Journal of Control, Automation and Systems, 2023, 21(1): 40-51.
    [9] Li H T, Wang Y Z, Xie L H.Output tracking control of Boolean control networks via state feedback[J].Automatica: Journal of IFAC, 2015, 59(C): 54-59.
    [10] Zhong J, Liu Y, Lu J Q, et al.Pinning control for stabilization of Boolean networks under knock-out perturbation[J].IEEE Transactions on Automatic Control, 2022, 67(3): 1550-1557.
    [11] Wang Y Z, Zhang C H, Liu Z B.A matrix approach to graph maximum stable set and coloring problems with application to multi-agent systems[J].Automatica: Journal of IFAC, 2012, 48(7): 1227-1236.
    [12] Liu X Y, Zhu J D.On potential equations of finite games[J].Automatica, 2016, 68: 245-253.
    [13] Cheng D Z.On finite potential games[J].Automatica: Journal of IFAC, 2014, 50(7): 1793-1801.
    [14] Wang Y H, Liu T, Cheng D Z.From weighted potential game to weighted harmonic game[J].IET Control Theory & Applications, 2017, 11(13): 2161-2169.
    [15] Cheng D Z, He F H, Qi H S, et al.Modeling, analysis and control of networked evolutionary games[J].IEEE Transactions on Automatic Control, 2015, 60(9): 2402-2415.
    [16] Li R, Yang M, Chu T G.Synchronization of Boolean networks with time delays[J].Applied Mathematics and Computation, 2012, 219(3): 917-927.
    [17] Chen H W, Liang J L, Huang T W, et al.Synchronization of arbitrarily switched Boolean networks[J].IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(3): 612-619.
    [18] 冯俊娥, 于永渊, 李海涛.受限布尔网络发展现状[J].控制与决策, 2018, 33(5): 960-968.(Feng J E, Yu Y Y, Li H T.Recent development of Boolean networks with constraints[J].Control and Decision, 2018, 33(5): 960-968.)
    [19] Liu W, Fu S H, Zhao J L.Set stability and set stabilization of Boolean control networks avoiding undesirable set[J].Mathematics, 2021, 9(22): 2864.
    [20] Zhang X, Hao Y Q, Cheng D Z.Incomplete-profile potential games[J].Journal of the Franklin Institute, 2018, 355(2): 862-877.
    [21] Rasmusen E.Games and information: An introduction to game theory[M].New Jersey: Wiley-Blackwell, 2006.
    [22] Guo Y Q, Wang P, Gui W H, et al.Set stability and set stabilization of Boolean control networks based on invariant subsets[J].Automatica: Journal of IFAC, 2015, 61(C): 106-112.
    引证文献
引用本文

王元华,张秋童,臧文科.切换网络演化博弈的同步[J].控制与决策,2024,39(10):3313-3318

复制
分享
文章指标
  • 点击次数:73
  • 下载次数: 715
  • HTML阅读次数: 681
  • 引用次数: 0
历史
  • 在线发布日期: 2024-08-29
  • 出版日期: 2024-10-20
文章二维码