面向少样本故障诊断的知识自监督深度表征学习方法
CSTR:
作者:
作者单位:

1. 浙江大学 控制科学与工程学院,杭州 310027;2. 深圳职业技术学院 智能科学与工程研究院, 广东 深圳 518055

作者简介:

通讯作者:

E-mail: chhzhao@zju.edu.cn.

中图分类号:

TP277

基金项目:

国家自然科学基金杰出青年基金项目(62125306);广东省基础与应用基础研究基金项目(2022A 1515240003).


Knowledge-aided self-supervised deep representation learning method for few-shot fault diagnosis
Author:
Affiliation:

1. College of Control Science and Engineering,Zhejiang University,Hangzhou 310027,China;2. Institute of Intelligence Science and Engineering, Shenzhen Polytechnic University,Shenzhen 518055,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前机器学习技术已被广泛应用于工业智能故障诊断中,但其成功应用的前提条件是能够获取到充足的含标签故障数据以对机器学习模型进行训练.实际工业场景中,设备常运行于正常状态,故障数据的获取与标注成本巨大,无法达到模型训练的需求.现有少样本诊断方法通常依赖于额外的有标签数据,无法克服工业场景下的数据采集与标注局限.对此,挖掘关键时序依赖特征以及专家先验知识与故障诊断任务之间的内在关联,提出一种知识自监督深度表征学习方法以实现少样本故障诊断.该方法设计了一个掩码信号重构与先验特征预测多任务联合的模型预训练策略,利用与目标设备类似设备积累的海量历史无标签数据对工业智能故障诊断模型中的特征提取器模型进行预训练,使得模型在无需额外标注数据的前提下,提取具有专家先验知识引导的时序变化模式,从而获取高泛化故障表征能力.通过上述基于知识自监督表征的预训练方法,在诊断过程中仅需利用目标设备的少量有标签故障样本对模型的全局参数进行微调,从而克服模型对有标签样本的依赖性难题.最后,通过一个跨数据集的故障诊断实验来模拟跨设备的少样本故障诊断场景,验证所提出方法在少样本场景下的有效性.

    Abstract:

    Machine learning technology has been widely used in industrial intelligent fault diagnosis, but the prerequisite for its successful application is to obtain enough labeled fault data to train the machine learning model. In actual industrial scenarios, equipment often works in normal state, and the cost of obtaining fault data and marking fault labels is huge. Therefore, the training requirements of machine learning model cannot be guaranteed, and then it is difficult to apply the model to the target equipment. To solve this problem, this paper explores the intrinsic relationship between key temporal dependent features, expert prior knowledge and fault diagnosis tasks, and proposes a knowledge self-supervised deep representation learning method for few-shot fault diagnosis. In this method, a model pre-training strategy combining prior feature prediction and mask signal reconstruction is designed. The feature extractor model of the industrial intelligent fault diagnosis model is pre-trained by using massive historical unlabeled data accumulated by similar equipments. This pre-training strategy can make the model add knowledge guidance of artificial prior features on the basis of mining temporal dependent features of samples, so as to obtain high generalization fault representation ability. After training the industrial fault diagnosis model based on the knowledge self-supervised representation learning method, only a few labeled fault samples of the target device are used to fine-tune the global parameters of the model in the diagnosis process, and the problem of model dependence on a large number of labeled samples will be solved. Finally, a cross-dataset fault diagnosis experiment is conducted to simulate the cross-equipment fault diagnosis scenario with few samples, and the effectiveness of the proposed method in the small-sample scenario is verified.

    参考文献
    相似文献
    引证文献
引用本文

姚家琪,宋鹏宇,沈萌,等.面向少样本故障诊断的知识自监督深度表征学习方法[J].控制与决策,2024,39(10):3357-3365

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-29
  • 出版日期: 2024-10-20
文章二维码