自生成兵棋AI:基于大语言模型的双层Agent任务规划
CSTR:
作者:
作者单位:

1. 南京大学 工程管理学院,南京 210093;2. 南京大学 智能装备新技术研究中心,南京 210093

作者简介:

通讯作者:

E-mail: zhouxz@nju.edu.cn.

中图分类号:

TP1

基金项目:

国家自然科学基金青年科学基金项目(62306135);教育部人文社会科学研究规划基金青年基金项目(23YJC630156);江苏省自然科学基金青年基金项目(BK20230783).


Self generated wargame AI: Double layer agent task planning based on large language model
Author:
Affiliation:

1. School of Management and Engineering,Nanjing University, Nanjing 210093,China;2. Research Center for New Technology in Intelligent Equipment,Nanjing University,Nanjing 210093,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    ChatGPT所代表的大语言模型对AI领域产生了颠覆性影响,但它主要关注自然语言处理、语音识别、机器学习和自然语言理解.对此,将大语言模型应用于智能决策领域,将大语言模型置于决策中心,并构建以大语言模型为核心的Agent体系结构.基于此,进一步提出双层Agent任务规划,通过自然语言的交互,发出和执行决策指令,并通过兵棋推演模拟环境进行仿真验证.通过兵棋对抗模拟实验,发现大语言模型的智能决策能力明显优于常用的强化学习AI,并且其智能性、可理解性都更强.实验表明,大语言模型的智能性与Prompt密切相关.此外,将大语言模型从以往的人机交互领域拓展到智能决策领域,对智能决策的发展具有重要的参考价值和意义.

    Abstract:

    The large language model, exemplified by ChatGPT, has brought a disruptive impact to the field of artificial intelligence, with a primary focus on natural language processing, speech recognition, machine learning, and natural language understanding. This paper innovatively applies the large language model to the field of intelligent decision-making, places the large language model in the decision-making center, and constructs an Agent architecture with the large language model as the core. Building on this, it further introduces a two-tier Agent task planning strategy, issuing and executing decision commands through natural language interactions, and conducting simulation validations within a wargame simulation environment. Through game confrontation simulation experiments, we find that the intelligent decision-making capability of large language models is significantly superior to that of commonly used reinforcement learning AI. This superiority is apparent in terms of intelligence, comprehensibility, and generalizability. And through experiments, it is found that the intelligence of the large language model is closely related to Prompt engineering. This work also expands the application of large language models from previous human-computer interactions to the realm of intelligent decision-making, providing valuable insights and significance for the advancement of intelligent decision-making.

    参考文献
    相似文献
    引证文献
引用本文

孙宇祥,赵俊杰,解宇轩,等.自生成兵棋AI:基于大语言模型的双层Agent任务规划[J].控制与决策,2024,39(12):3927-3936

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-20
  • 出版日期: 2024-12-20
文章二维码