一种新的轻量化生成对抗网络及其在风电数据插补中的应用
CSTR:
作者:
作者单位:

1. 内蒙古工业大学 电力学院,呼和浩特 010051;2. 大规模储能技术教育部工程研究中心,呼和浩特 010080;3. 内蒙古自治区高等学校智慧能源技术与装备工程研究中心,呼和浩特 010080;4. 内蒙古北方龙源风力发电有限责任公司,内蒙古 乌兰察布 013550

作者简介:

通讯作者:

E-mail: qys@imut.edu.cn.

中图分类号:

TM614

基金项目:

国家自然科学基金项目(62363029,62241309);内蒙古自治区高等学校科学研究项目(NJZY22365);内蒙古自然科学基金项目(2023LHMS06005,2022MS06018).


A new lightweight generative adversarial network and its application in wind power data interpolation
Author:
Affiliation:

1. School of Electric Power,Inner Mongolia University of Technology,Hohhot 010051,China;2. Engineering Research Center of the Ministry of Education for Large Scale Energy Storage Technology,Hohhot 010080,China;3. Intelligent Energy Technology and Equipment Engineering Research Center of Higher Education Institutions in Inner Mongolia Autonomous Region,Hohhot 010080,China;4. Inner Mongolia North Longyuan Wind Power Co.,Ltd.,Ulanqab 013550,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对风电场监控和数据采集系统(supervisory control and data acquisition,SCADA)数据在采集传输过程中常遇到的数据丢失问题,提出一种新的自适应轻量化生成对抗网络插补策略(adaptive transformer slim GAIN,AT-SGAIN),旨在增强数据完整性.AT-SGAIN通过简化GAIN模型结构,显著提高了计算效率;采用双判别器结构,分别用于真实数据和生成数据的鉴别,保障了速度提升过程中插补精度的维护.算法集成了Transformer(变压器模型)编码器,增强了对风电数据时间序列特征的捕捉能力,并通过自适应双分支注意力机制,精准调整通道和空间注意力权重,提升了网络对局部信息的敏感度.实验结果证明,所提算法在多项对比测试中均显著优于现有经典方法.

    Abstract:

    A lightweight generative adversarial network interpolation strategy based on adaptive transformer slim GAIN(AT-SGAIN) is proposed to address the common problem of data loss in the collection and transmission of supervisory control and data acquisition(SCADA) data in wind farms, aiming to enhance data integrity. AT-SGAIN simplifies the GAIN model structure, significantly improves computational efficiency, and adopts a dual discriminator structure for distinguishing between real data and generated data, ensuring the maintenance of interpolation accuracy during the speed improvement process. This model integrates a Transformer encoder, enhancing the ability to capture time series features of wind power data. Through an adaptive dual branch attention mechanism, it accurately adjusts channel and spatial attention weights, improving the network's sensitivity to local information. The experimental results show that, in multiple comparative tests, the algorithm proposed is significantly better than existing classical methods.

    参考文献
    相似文献
    引证文献
引用本文

武甲,齐咏生,马然,等.一种新的轻量化生成对抗网络及其在风电数据插补中的应用[J].控制与决策,2024,39(12):4141-4150

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-20
  • 出版日期: 2024-12-20
文章二维码