基于GNDO和MOChOA的汽车传动轴轴承密封圈过盈量优化设计
CSTR:
作者:
作者单位:

1. 哈尔滨理工大学 先进制造智能化技术教育部重点实验室,哈尔滨 150080;2. 慈兴集团有限公司,浙江 宁波 315300;3. 矿冶过程智能优化制造国家重点实验室,北京 100089;4. 河南科技大学 机电工程学院,河南 洛阳 471003

作者简介:

通讯作者:

E-mail: shengda1302@126.com.

中图分类号:

TP301

基金项目:

宁波市科技创新2025重大专项项目(2018B10005);黑龙江省“百千万”工程科技重大专项项目(2019ZX 03A02);矿冶过程自动控制技术国家重点实验室开放基金项目(BGRIMM-2020-06).


Optimization design for interference amount of sealing rings for automobile transmission shaft bearings based on GNDO and MOChOA
Author:
Affiliation:

1. Key Laboratory of Advanced Manufacturing and Intelligent Technology,Ministry of Education,Harbin University of Science and Technology,Harbin 150080,China;2. Cixing Group Co.,Ltd,Ningbo 315300,China;3. State Key Laboratory of Intelligent Optimized Manufacturing in Mining & Metallurgy Process,Beijing 100089,China;4. School of Mechatronics Engineering,Henan University of Science and Technology,Luoyang 471003,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决汽车传动轴轴承密封唇与防尘盖间过盈量的多目标优化问题,提出一种基于广义正态分布优化(GDNO)和多目标黑猩猩优化算法(MOChOA)的汽车传动轴轴承密封圈过盈量优化设计方法.利用带扰动的数字分段线性混沌映射初始化黑猩猩个体的位置,降低前期搜索的盲目性,提高MOChOA的收敛速度,改进MOChOA的寻优精度;将GNDO用于MOChOA的全局探索和局部开发,选择当前最佳位置,降低MOChOA陷入局部最优的概率;采用MOChOA在搜索空间中寻找Pareto最优解集,为轴承设计人员提供了多种解决方案.实验结果表明,利用该方法优化后轴承的密封性能得到较大提升,优化后轴承污染物进入量的平均值减少77.78%.

    Abstract:

    In order to solve the multi-objective optimization problem of the interference amount between the sealing ring and the dust cover of automotive transmission shaft bearing, an optimization design method for the interference amount of automobile transmission shaft bearings based on the generalized normal distribution optimization(GNDO) algorithm and multi-objective chimp optimization algorithm(MOChOA) is proposed. The digital piecewise linear chaotic map with perturbation is used to initialize the positions of chimp individuals, in order to reduce the blindness of early search, enhance the convergence speed of the MOChOA, and improve the optimization accuracy of the MOChOA. The GNDO is employed to conduct global exploration and local exploitation, and select the current best location, which reduces the probability of the MOChOA falling into local optima. The MOChOA searches for the Pareto optimal solution set, which provides various solutions for bearing designers. The experimental results show that the sealing performance of the optimized bearing has been greatly improved. The average value of the pollutant entry amount of the optimized bearings decreases by 77.78%.

    参考文献
    相似文献
    引证文献
引用本文

于军,赵坤,郭振宇,等.基于GNDO和MOChOA的汽车传动轴轴承密封圈过盈量优化设计[J].控制与决策,2024,39(12):4181-4190

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-20
  • 出版日期: 2024-12-20
文章二维码