基于自适应特征模式分解与联合卷积的UUV辐射噪声识别方法
CSTR:
作者:
作者单位:

河南大学 人工智能学院,郑州 450046

作者简介:

通讯作者:

E-mail: weiqian@vip.henu.edu.cn.

中图分类号:

TN911.6;TB566;TP181

基金项目:

国家自然科学基金项目(61771006);河南省科技攻关项目(HDXJJG2021-140,22A416004,HDXJJG2023-064,231111212500(省重点研发项目)).


UUV radiated noise identification method based on adaptive feature modal decomposition and joint convolutional network
Author:
Affiliation:

School of Artificial Intelligence,Henan University,Zhengzhou 450046,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对水下小型UUV难以检测识别问题,提出基于自适应特征模式分解与联合卷积网络的UUV辐射噪声识别方法.首先,采用自适应特征模式分解(AFMD)对信号进行处理,获取一系列分解分量,根据基尼指数(GiNi index)选取最优分量进行重构;然后,对重构后的信号进行连续小波变换,获取不同类型辐射噪声的二维时频图;最后,在频率动态卷积模块和SGE(spatial group-wise enhance)模块基础上,引入特征融合模块构建联合卷积神经网络(JCNN),利用所设计网络提取二维时频图特征,实现水下无人潜水器辐射噪声分类.实验结果表明,所提出方法能够对水下UUV辐射噪声进行识别,且识别率较高.

    Abstract:

    Aiming at the detection and recognition challenges of underwater unmanned underwater vehicle(UUV) radiation noise, a proposed method combining adaptive feature modal decomposition(AFMD) with a joint convolutional neural network(JCNN) is proposed. Firstly, AFMD is applied to the signal to obtain a set of decomposition components, followed by reconstruction based on the GiNi index to select the most optimal component. Then, the reconstructed signal undergoes continuous wavelet transformation, producing 2D time-frequency maps representative of distinct radiation noise categories. The methodology incorporates a feature fusion module within the frequency dynamic convolution module and SGE module to establish the JCNN. This network adeptly extracts features from the 2D time-frequency maps, facilitating the classification of UUV radiation noise. Experimental results demonstrate the effectiveness of the proposed method in accurately identifying underwater UUV radiation noise, achieving a notably high recognition rate.

    参考文献
    相似文献
    引证文献
引用本文

肖启阳,黄澳飞,金勇,等.基于自适应特征模式分解与联合卷积的UUV辐射噪声识别方法[J].控制与决策,2025,40(1):155-161

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-12
  • 出版日期: 2025-01-20
文章二维码