基于多尺度3D-CNN-CBAM的空气质量指数时空预测
CSTR:
作者:
作者单位:

1. 安徽大学 商学院,合肥 230601;2. 安徽大学 大数据与统计学院,合肥 230601;\hspace{3pt};3. 安徽大学 数学科学学院,合肥 230601

作者简介:

通讯作者:

E-mail: liujinpei2012@163.com.

中图分类号:

Q212

基金项目:

国家自然科学基金项目(72071001,72371001,72171002,72471001,72271002);安徽省高校优秀青年人才重点项目(gxyqZD2022001);安徽省自然科学基金项目(2408085Y035);安徽省高校杰出青年基金项目(2023AH020009);安徽省高校优秀青年基金项目(2023AH030006).


Spatio-temporal forecasting of air quality index based on multi-scale 3D-CNN-CBAM
Author:
Affiliation:

1. College of Business,Anhui University,Hefei 230601,China;2. College of Big Data and Statistics, Anhui University,Hefei 230601,China;3. College of Mathematical Sciences, Anhui University,Hefei 230601,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    精确地把握空气质量指数(AQI)的实时动态演变规律对大气污染防治和城市公共卫生治理至关重要.因此,通过构建三维空间张量,将AQI特征信息由时间维度扩展至时空维度,并提出一种基于多尺度三维卷积注意力机制的时空预测网络模型,以提高AQI预测精度.预测方法首先对相关影响因素数据进行有效筛选.其次,将AQI数据及其影响因素分解为不同模态下的子序列.进而,基于时间、空间地理位置和影响因素3个维度,构建三维空间张量,以反映AQI数据的时空特征演变.然后,设计三维卷积注意力机制网络模型对子序列进行预测,以有效提取AQI与其影响因素之间的关键时空关联性特征.通过学习局部AQI序列特征的重要程度,该模型能够对空间时域信息赋予不同权重,以增强关键信息的影响力.将所提出的方法应用于3大城市群2019年sim2024年的日度AQI预测,结果表明,该方法适用于具有时空属性的AQI预测,与现有方法相比具有更高的预测精度和适用性.

    Abstract:

    The accurate understanding of the real-time dynamic evolution patterns of the air quality index (AQI) is crucial for air pollution control and urban public health governance. Therefore, we extend the AQI feature information from the temporal dimension to the spatio-temporal dimension by constructing a three-dimensional space tensor. Furthermore, a spatio-temporal forecasting network model based on the multi-scale three-dimensional-convolutional neural networks-convolutional block attention mechanism (3D-CNN-CBAM) is proposed to improve the AQI prediction accuracy. First, the effective screening is performed on the influencing factors data. Second, the AQI and its influencing factors are decomposed into subsequences with different modes. Then, based on the three aspects of time, spatial geographic location, and influencing factors, a three-dimensional spatial tensor is constructed to reflect the spatio-temporal characteristic evolution of AQI data. Third, a 3D-CNN-CBAM network model is designed to predict the subsequences, which can effectively extract the crucial spatio-temporal correlational features between the AQI and its influencing factors. By learning the importance of local AQI sequence features, the model can assign different weights to spatio-temporal information, thereby enhancing the influence of critical information and reducing the interference of redundant information. The proposed method is applied to the daily AQI prediction in the three major urban agglomerations from 2019 to 2024. The results show that the proposed method is suitable for predicting the AQI with spatio-temporal attributes and exhibits higher forecasting accuracy and applicability compared to existing methods.

    参考文献
    相似文献
    引证文献
引用本文

刘金培,罗瑞,陈华友,等.基于多尺度3D-CNN-CBAM的空气质量指数时空预测[J].控制与决策,2025,40(2):404-412

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-09
  • 出版日期: 2025-02-20
文章二维码