四绳驱动并联机器人工作空间与刚度的建模、分析及优化方法
CSTR:
作者:
作者单位:

1.中山大学·深圳 智能工程学院;2.广东省消防科学与智能应急技术重点实验室,广州 510006

作者简介:

通讯作者:

E-mail: pengjq7@mail.sysu.edu.cn.

中图分类号:

基金项目:

国家自然科学基金项目(62103454);广东省基础与应用基础研究基金项目(2024A1515010540);深圳市科技计划项目(JCYJ20220530150006014).


Modeling, analysis and optimization method of workspace and stiffness of 4-cable-driven parallel robot
Author:
Affiliation:

1.School of Intelligent Systems Engineering,Sun Yat-Sen University Shenzhen Campus,Shenzhen 518107,China;2.Guangdong Provincial Key Laboratory of Fire Science and Intelligent Emergency Technology,Guangzhou 510006,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    相比于刚性连杆并联机器人, 绳驱并联机器人(cable-driven parallel robot, CDPR)存在结构简单轻盈、工作空间大、响应速度快及成本低廉等优点, 非常适合极端空间环境. 然而, 由于电机、绳索和末端执行器之间存在复杂的耦合关系, CDPR工作空间和刚度的求解具有挑战性. 基于此, 提出一种四绳驱动并联机器人工作空8间与刚度的建模、分析及优化方法, 用于指导CDPR动锚点位置设计决策. 首先, 建立考虑滑轮模型的CDPR运动学模型, 并通过优化方法对CDPR“电机-绳索-末端”多层运动学进行求解; 然后, 建立CDPR的工作空间, 并给出工作空间优化的求解方法; 进一步地, 推导CDPR的刚度模型, 并给出刚度优化的求解方法; 最后, 根据优化后的工作空间与刚度模型, 对CDPR的动平台锚点位置设计决策进行优化. 数值仿真和实验验证了所提出方法的正确性与有效性.

    Abstract:

    Compared with a rigid-link parallel robot, a cable-driven parallel robot (CDPR) has the advantages of a simple and lightweight structure, large working space, fast response speed, and low cost, which is very suitable for extreme space environments. However, due to the complex coupling relationship between the motor, the cable, and the end effector, the solution of the CDPR workspace and stiffness is challenging. In this paper, a modeling, analysis, and optimization method of workspace and stiffness of 4-cable-driven parallel robots is proposed, which is used to guide the design decision of CDPR dynamic anchor position. Firstly, the CDPR kinematics model considering the pulley model is established, and the multi-layer kinematics is solved using the optimization method. Then, the workspace of the CDPR is established, and the solution method of workspace optimization is given. Furthermore, the stiffness model of the CDPR is derived, and the solution method of stiffness optimization is given. Finally, according to the optimized workspace and stiffness model, the anchor position design decision of the moving platform of the CDPR is optimized. The numerical simulation results and experiments verify the correctness and effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

陈启瀚,郭永华,韩瑜,等.四绳驱动并联机器人工作空间与刚度的建模、分析及优化方法[J].控制与决策,2025,40(2):461-468

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-10
  • 出版日期: 2025-02-20
文章二维码