

基于动态网格k邻域搜索的激光点云精简算法

陈辉, 黄晓铭, 刘万泉

引用本文: 陈辉,黄晓铭,刘万泉.基于动态网格k邻域搜索的激光点云精简算法[J]. 控制与决策, 2020, 35(12): 2986–2992.

在线阅读 View online: https://doi.org/10.13195/j.kzyjc.2019.0444

您可能感兴趣的其他文章

Articles you may be interested in

阴影条件下基于迁移强化学习的光伏系统最大功率跟踪

Transfer reinforcement learning based maximum power point tracker of PV systems under partial shading condition 控制与决策. 2020, 35(12): 2939–2949 https://doi.org/10.13195/j.kzyjc.2019.0412

基于免疫优化的平面Acrobot线性自抗扰鲁棒镇定

Robust stabilization of planar Acrobot using linear active disturbance rejection control with immune optimization 控制与决策. 2020, 35(12): 3053-3058 https://doi.org/10.13195/j.kzyjc.2019.0289

基于搜索空间划分与Canopy K-means聚类的种群初始化方法

Population initialization based on search space partition and Canopy K-means clustering 控制与决策. 2020, 35(11): 2767-2772 https://doi.org/10.13195/j.kzyjc.2019.0358

基于姿态估计的实时跌倒检测算法

Real-time fall detection algorithm based on pose estimation 控制与决策. 2020, 35(11): 2761-2766 https://doi.org/10.13195/j.kzyjc.2019.0382

基于行为流图的可信交互检测方法

Trustworthy interaction detection method based on user behavior flow diagram 控制与决策. 2020, 35(11): 2715-2722 https://doi.org/10.13195/j.kzyjc.2018.1618

基于动态网格k邻域搜索的激光点云精简算法

陈 辉^{1,2†}, 黄晓铭¹, 刘万泉²

(1. 上海电力大学 自动化工程学院,上海 200090; 2. 科廷大学 计算机学院,澳大利亚 珀斯 6102)

摘 要:由非接触式扫描方法获得的点云数据存在大量的冗余点,为便于模型重构,提出一种新的基于动态网格 *k*邻域搜索的点云精简方法.首先,对点云进行*k*邻域搜索,在*k*邻域搜索过程中采用动态网格的方法快速寻找*k* 邻域点;然后,根据数据点的*k*邻域计算点的曲率、点与邻域点法向夹角的平均值、点与邻域点的平均距离,并利用 这3个参数定义特征判别参数和特征阈值,比较大小,对特征点进行提取;最后,利用包围盒法对非特征点进行二 次精简,将精简后的点云与特征点拼接,实现精简目的.实验结果表明,所提出方法与其他*k*邻域搜索方法相比,提 高了计算效率,并且将特征提取与二次精简方法相结合,既可保留模型的几何特征,又能避免空洞区域的产生,在 精度和速度上都取得了较好的效果.

关键词: 激光点云; 点云精简; 动态网格; k邻域搜索; 特征点提取; 二次精简

中图分类号: TP391.41; TH741.1 文献标志码: A

DOI: 10.13195/j.kzyjc.2019.0444

开放科学(资源服务)标识码(OSID):

引用格式: 陈辉,黄晓铭,刘万泉. 基于动态网格 *k* 邻域搜索的激光点云精简算法 [J]. 控制与决策, 2020, 35 (12): 2986-2992.

Laser point cloud simplification algorithm based on dynamic grid k-nearest neighbors searching

CHEN Hui^{1,2†}, HUANG Xiao-ming¹, LIU Wan-quan²

College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China;
 Department of Computing, Curtin University, Perth, WA, 6102, Australia)

Abstract: In order to realize 3D reconstruction from huge laser scanning point cloud, this paper proposes an improved algorithm for the simplification of the laser point cloud, based on dynamic grid k-nearest neighbors searching. Firstly, the dynamic neighborhood method is used to quickly find the k-neighbor point in the search process. Then, the data point curvature, the average vector angle between the point and its k-nearest neighborhood points, and the average distance from the point to its neighborhood points are calculated for each k-nearest neighborhood. According to the three parameters, the discriminant parameter and characteristic threshold are defined to extract the feature points. Finally, using the bounding box method to simplify the non-feature points, and to splice the reduced non-feature points. The experimental results show that the proposed algorithm improves the accuracy and computational efficiency, compared with other k-nearest neighbors search methods. Furthermore, this method can not only preserve the geometric features of the model, but also avoid the generation of large-scale blank areas, combining with the feature extraction and the secondary reduction. **Keywords:** laser point cloud; point clouds simplification; dynamic grid; k-nearest neighbors search; feature point extraction; secondary reduction

0 引 言

利用激光数据重建实物的三维模型,在数字城 市、文物保护、三维地图构建等领域中有着重要的应 用.由扫描仪获取到的点云数据细节特征丰富,数 据量庞大,并且包含着大量的冗余数据点,若不进 行精简预处理,会严重影响后续模型重建过程的效 率.此外,过密的数据点也会影响目标曲面重构的光 滑性,甚至会由于存在噪声点而无法实现模型的重 建^[1-2].因此,在保留模型特征的前提下对点云数据进 行精简具有实际意义.

近年来,对散乱激光点云的精简方法主要分为两 类:基于三角网格模型的点云精简方法和直接基于 数据点的点云精简方法^[3].基于三角网格模型的精简 方法通过对三角网格进行处理,完成点云精简,该方

基金项目: 国家自然科学基金项目(51705304); 上海市自然科学基金项目(16ZR1413400, 20ZR1421300). [†]通讯作者. E-mail: chenhui@shiep.edu.cn.

收稿日期: 2019-04-10; 修回日期: 2019-06-23.

法计算复杂,对计算机系统资源要求高,且对噪声比 较敏感.直接基于数据点的点云精简方法根据数据 点之间的拓扑结构,计算点云的几何特征信息,并依 次对点云数据进行精简,与基于三角网格模型的精简 方法相比,无需计算和存储复杂的三角网格结构,精 简效率相对较高.

Lee 等^[4] 根据点云的法矢偏差值区分特征与非 特征区域,较好地保留了细节特征. Zhou 等^[5]利用八 叉树和平均曲率法对点云数据进行精简,可保留数 据的细节特征,但计算量大. Lee 等^[6]利用离散形态 算子进行特征提取,可有效保留特征细节,但易受噪 声干扰. Ge 等^[7]利用点的邻域计算曲率值,设置合适 阈值,适用于细节信息较少的点云模型. 杨秋翔等^[8] 以主曲率的 Hausdorff 距离为依据对点云进行特征 点提取与保留,提高了精简效率,但精简结果并不均 匀. 2018 年张文明等^[9] 提出基于特征信息的点云精 简算法,能很好地保留特征点,但在精简率较大的情 况下容易产生空洞现象,影响后续三维重建.

直接基于数据点的精简方法在建立数据点之间 的拓扑关系时,需构建数据点的k邻域.传统的k邻域 构建方法^[10]是查找点云中指定点以外的每个点并计 算与该点的欧氏距离,取距离最近的k个点构建k邻 域.当点云数量少时,该方法简单易行,然而对于由复 杂曲面获得的海量数据,传统的k邻域计算方法会耗 费大量时间.针对该问题,文献[11-12]将平面进行区 域划分,而后进行k邻域搜索,该方法适用于平面点 集.文献[13]对点云进行均匀网格划分,再进行k邻 域搜索,但数据点不一定位于所在网格的中心,增大 了k邻域搜索过程的复杂性.

针对以上问题,本文提出一种基于动态约束网格的*k*邻域搜索方法,并设置多判别参数对特征点进行提取,再结合特征提取和二次精简方法,既可保留模型细节特征,又可避免空洞区域的产生.

1 方法总体框架

本文算法的总体流程如下:首先,对激光点云进 行*k*邻域搜索,由获取到的*k*邻域计算数据点的特征 参数,包括曲率、点与邻域点法向夹角的平均值和点 与邻域点的平均距离;然后,依此3个参数定义特征 判别参数和特征阈值,比较二者大小,对特征点进行 保留;最后,利用包围盒法对非特征点进行二次精简, 并将精简后的点云与特征点拼接,完成点云的精简过 程.上述过程具体伪代码实现如算法1所示.

算法1 基于动态网格*k*邻域搜索的激光点云精简算法.

step 1: 输入点云数据;

step 2: for (*i* = 1; *i* < *N* + 1; *i* + +) // *N* 为点云的 个数;

step 3: 对数据点进行*k* 邻域搜索; step 4: 计算点的特征参数; step 5: end for;

step 6: for (i = 1; i < N + 1; i + +);

step 7: 计算特征判别参数和特征阈值;

step 8: if 特征判别参数>特征阈值,

then该点判断为特征点;

step 9: else 该点为非特征点;

step 10: end if;

step 11: end for;

step 12: 使用包围盒法对非特征点集进行精简; step 13: 将精简后的点与特征点融合;

step 14: 结束.

2 基于动态网格的k邻域搜索

k邻域搜索是指在散乱点云中搜索距离数据点 最近的 k 个点. 以数据点为中心扩张一定边长 l 的立 方体范围,当网格内的点集Q个数为 $\alpha k \leq m \leq \beta k$ 时,在点集Q内搜索k邻域点;当 $m \leq \alpha k$ 时,将l的取 值增大,扩大网格的约束范围,设定阈值,若范围扩大 的次数超过阈值时仍不符合要求,则说明该点所在的 区域为稀疏区域,不符合特征点的要求,将该点舍弃, 寻找下一点的k邻域并进行计算;当 $m \ge \beta k$ 时,将l的取值减小,缩小网格的约束范围.该过程为一个动 态约束网格,可以根据点云的密度扩大或缩小网格 的范围,避免在整个点云范围内搜索,大大提高了k 邻域搜索的效率.由于数据点总是处于网格的中心, 与包围盒k邻域搜索方法相比,避免由于网格内点数 的不确定性带来的缺陷,从而提高k邻域搜索的有效 性.其中α和β为可变调节系数,当测量点分布均匀 时, α 和 β 的取值较小;否则取值较大.具体搜索过程 如下.

step 1: 以点集中某一点为中心,向四周沿*x、y、z* 轴正反方向扩展*l*/2的距离,形成边长为*l*的立方体;

step 2: 在扩展的立方体范围内,求出此范围内的 点数*m*;

step 3: 如果 $m \ge \alpha k$,则转step 4,否则转step 5;

step 4: 如果 $m \leq \beta k$,则转step 6,否则 $l = l - \Delta l$, 缩小立方体的范围,转step 2;

step 5: 令 $l = l + \Delta l$,扩大立方体的范围,转 step 2; step 6: 求出范围内每一点到中心点的距离,并按 距离升序排列,得到数据点的k邻域点; step 7:结束.

3 基于多判别参数的特征点提取

激光点云中能有效反映物体纹理信息的数据点 被称为特征点.为使精简后的数据能更逼近原型,需 要对特征点进行识别和提取,以保留足够的特征信 息^[14].本文利用与点云数据有关的几何特征:曲率、 法向夹角、平均距离等参数来判断数据点是否为特 征点,并对特征点进行提取.

3.1 曲率计算

曲率作为点云重要的刚性特征,反映了局部曲面 的变化及凹凸程度,是特征点识别的重要依据^[15].假 设 g₁和 g₂为点云模型中的任意两点,若 g₁点位于曲 率较大的曲线上,其邻域点与切平面间的距离相对较 远,则该点为特征点;g₂点位于曲率较小的曲线上,其 邻域点与切平面的距离较近,该点为非特征点.

本 文 采 用 Hoppe 等^[16] 提 出 的 主 成 分 分 析 (principal components analysis, PCA) 方法, 通过对数 据点的 *k* 个邻域点进行协方差分析, 估计数据点的曲 率及法向量, 算法简单且速度快.

设数据点 g_i 是点云 $G = \{g_i(x_i, y_i, z_i) | i = 1, 2, ..., N\}$ 中的任意点, g_j 是其邻域点,邻域点集为 $\{g_{ij}(x_{ij}, y_{ij}, z_{ij}) | j = 1, 2, ..., k\}$,邻域重心可表示为

$$\sigma_i = \frac{1}{k} \sum_{j=1}^k g_{ij},\tag{1}$$

则点gi的协方差矩阵Ti定义为

$$T_{i} = \begin{bmatrix} g_{i1} - \sigma_{i} \\ g_{i2} - \sigma_{i} \\ \vdots \\ g_{ik} - \sigma_{i} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} g_{i1} - \sigma_{i} \\ g_{i2} - \sigma_{i} \\ \vdots \\ g_{ik} - \sigma_{i} \end{bmatrix}.$$
 (2)

协方差矩阵 T_i 为半正定的对称矩阵,定义了局 部曲面的几何信息.使用Jacobi方法求解协方差矩阵 T_i ,解出矩阵 T_i 的3个特征值 λ_1 、 λ_2 、 λ_3 以及特征值 对应的特征向量 n_1 、 n_2 、 n_3 .若 $\lambda_1 \ge \lambda_2 \ge \lambda_3$,则最 小特征值 λ_1 对应的特征向量 n_1 即为数据点 g_i 局部 曲面的法向量, λ_1 描述了曲面沿法向量方向的变化, 而 λ_2 和 λ_3 表示的是邻域内各点分布在切平面上的 情况.因此,数据点 g_i 在k邻域内的曲面变分定义为

$$\tau_i = \frac{\lambda_1}{\lambda_1 + \lambda_2 + \lambda_3}.$$
(3)

点云模型在数据点 g_i 的曲率 H_i 可近似为在该点的曲面变分 $\tau_i^{[17]}$,即 $H_i \approx \tau_i$.

3.2 点与邻域点的法向夹角平均值计算

作为衡量曲面弯曲或平坦的度量,通常将法向夹 角的变化用来评估数据点为特征点的可能性^[18].数 据点 g_i 与其邻域点 g_j 的法向分别为 \vec{n}_{g_i} 与 \vec{n}_{g_j} ,则 g_i 与 g_i 的法向夹角余弦为

$$\cos\theta_{g_ig_j} = \frac{\vec{n}_{g_i} \cdot \vec{n}_{g_j}}{|\vec{n}_{g_i}| \times |\vec{n}_{g_j}|},\tag{4}$$

其中 $\theta_{g_ig_i}$ 的取值范围为 $[0,\pi]$.

对数据点与所有邻域点的法向夹角取平均值,有

$$\theta(g_i) = \frac{1}{k} \sum_{j=1}^k \theta_{g_i g_j}.$$
(5)

法向夹角参数综合考虑了邻域点对数据点弯曲程度 的影响,若 $\theta(g_i)$ 值越大,则数据点 g_i 及邻域的曲面弯 曲程度越大, g_i 越有可能处于特征区域;反之, $\theta(g_i)$ 值 越小, g_i 越有可能处于非特征区域.

3.3 点与邻域点的平均距离计算

三维模型中,由于点云的不规则分布,当点云分 布较密集时,点与周围邻域点的平均距离会比较小, 所在区域一般是模型的特征区域;反之,当数据点附 近点云分布比较稀疏时,点与周围邻域点的平均距离 会比较大,所在区域一般是模型的平坦区域.

对任一点g_i与邻域点g_j的平均距离为

$$D(g_i) = \frac{1}{k} \sum_{j=1}^{k} |g_i - g_j|.$$
 (6)

在判断数据点是否为特征点时,将点与邻域点的 平均距离作为特征的一部分加入特征参数中,可以很 好地保留模型的细节信息.

3.4 特征点判别及提取

将以上计算得到的数据点 g_i 的曲率 H_i 、点与邻 域点的法向夹角平均值 $\theta(g_i)$ 、点与邻域点的平均距 离 $D(g_i)$ 作为无量纲的参数值定义数据点 g_i 的特征 判别参数 $w(g_i)$ 和判别阈值 δ ,当某数据点的特征参 数大于阈值时即判别该点为特征点,否则为非特征 点.

在散乱点云模型中特征点所在区域曲面变化明显、点云密度较高, H_i 和 $\theta(g_i)$ 的值越大,数据点 g_i 为特征点的可能性越大; $D(g_i)$ 的值越小,数据点 g_i 为特征点的可能性越大.因此定义特征判别参数为

$$w(g_i) = \frac{\lambda_H H_i + \lambda_\theta \theta(g_i)}{\lambda_d D(g_i)},\tag{7}$$

其中 λ_H 、 λ_θ 、 λ_d 是调节系数.

根据不同数据实验结果的分析,曲率系数 λ_H 的 取值根据模型的不同而不同,通过提高曲率对特征 识别的贡献权重,从而提高识别的准确性和稳定性, 其对计算结果的影响较大.本文根据文献[18]中曲 率系数的取值,取 $\lambda_H = 200$;邻域点个数k的取值 取决于点云数据模型的密度和分布的均匀性,k取值 较大,会影响计算效率,k取值太小不能有效地判定 特征点. 文献[16]中用 PCA 方法估计曲率及法向量 时,k邻域大小取8 ~ 64比较合适,本文取k = 15;距 离系数 λ_d 为变化值,只影响特征点提取的个数,对算 法的稳定性无影响,当 λ_d 较大时,特征点较多, λ_d 较 小时,特征点较少,且为比较明显的特征,当点云模型 中包含噪声或数据分布过于密集时,需要对距离系数 λ_d 进行调整.

为了避免模型的差异对调节系数的设置带来的 影响,本文定义特征判别阈值为

$$\delta = \frac{\eta \sum_{i=1}^{N} \frac{H_i + \theta(g_i)}{D(g_i)}}{N}.$$
(8)

其中:η为特征点数量控制系数,N为点云数据点个数.

定义特征点的标识

$$\Omega(g_i) = \begin{cases}
1, \ w(g_i) \ge \delta; \\
0, \ w(g_i) \le \delta.
\end{cases}$$
(9)

若数据点的特征参数 $w(g_i)$ 大于阈值 δ 时, $\Omega(g_i) = 1$, 则该点 g_i 被判定为特征点;若特征参数 $w(g_i)$ 小于阈 值 δ 时, $\Omega(g_i) = 0$,则该点 g_i 被判定为非特征点.

4 二次精简

特征点提取时,由于只能保留特征判别参数较大的点,在平坦区域会因为点的缺失而形成空白区域,

直接影响原始模型的完整度,严重地降低了模型重构的精度.针对该问题,本文采用基于包围盒的精简方法对非特征点集进行二次精简.此外,若单独使用包围盒法对点云进行精简处理,容易丢失特征判别参数较大的点,使点云丧失重要的细节特征.因此,将该方法作为二次精简方法与上文的特征点提取相结合,其具体算法过程如下.

step 1: 将第3.4小节中标识为0的数据点作为待 处理点集读入,求出数据点在*x、y、z*方向上的最大 值,得到大包围盒的边长;

step 2: 根据精简率的需要确定小包围盒的边长, 将大包围盒分割成均匀大小的小包围盒;

step 3: 将点云中所有点按其三维坐标划分到不同的小包围盒内,对每一个小包围盒,求出其内部所 有点到其中心的距离并进行排序,只保留距离中心最 近的点;

step 4: 将 step 3 中得到的点与第 3.4 小节中标识 为1 的数据点拼接整合,最终得到精简后的点云数据.

5 实验结果与分析

为了验证本文方法的有效性及精简效果,选取 Bunny(来自于斯坦福大学)和Chair模型为验证目标, 利用Matlab 2014a进行运算.精简率可直观显示点云 精简的效果,通常被定义为精简掉的点云个数所占原 始点云个数的百分比.在不同的精简率下,将本文方

(b1) 精简率15.24% (b2) 精简率68.22% (b3) 精简率91.29% (b4) 精简率19.52% (b5) 精简率67.17% (b6) 精简率90.89%
 (b) 随机采样法精简效果

(c1) 精简率15.23% (c2) 精简率68.37% (c3) 精简率91.71% (c4) 精简率19.17% (c5) 精简率67.58% (c6) 精简率91.25%

(c) 文献[9]方法精简效果

(d1) 精简率15.84% (d2) 精简率68.53% (d3) 精简率92.17% (d4) 精简率19.65% (d5) 精简率67.52% (d6) 精简率91.21%
 (d) 本文方法精简效果

法与包围盒法、随机采样法和文献[9]中基于特征的 精简方法进行比较,分别对 Bunny 和 Chair 模型进行 精简,结果如图1所示.

由图1(a)和图1(b)可以看出,包围盒法和随机采 样法精简后的模型各区域精简比较均匀,但在平坦区 域存在冗余信息,且在复杂区域特征点丢失较多,精 简后的模型细微特征不够明显;文献[9]中的方法在 曲率大的地方点云比较密集,在曲率小的地方点云比 较稀疏,在高精简率的情况下,平坦区域容易产生空 洞现象,如图1(c)所示.由图1(d)可以看出,相比包围 盒法和随机采样法,本文算法能够有效缩减平坦区域 的冗余数据,并且能够在曲面变化较大的区域保留足 够的细节信息;相比于文献[9]中的精简算法,本文算 法在保持模型细节特征的同时能较好地避免空洞区 域的出现.

为了更客观地评估点云精简后的精度,在此引用 文献[19]的误差计算方法,求取精简点云与原始点云 的最大误差和平均误差.其中最大误差和平均误差 的表达式分别为

$$\Delta_{\max}(S, S^*) = \max_{g \in S} d(g, S^*), \tag{10}$$

$$\Delta_{\text{ave}}(S, S^*) = \frac{1}{\|S\|} \sum_{g \in S} d(g, S^*).$$
(11)

其中 $d(g, S^*)$ 表示原始曲面S上采样点g到精简点云曲面 S^* 上投影点 g^* 的欧氏距离. 设点g的法向矢量为 N_p ,则 $d(g, S^*) = N_p(g^* - g)$.

图 2 Bunny和Chair模型的精简误差比较

表1 Bunny和Chair模型的最大误差:

单位: mm

模型	精简率/%	包围盒法		随机采样法		文献[9]算法		本文算法	
		最大误差	平均误差	最大误差	平均误差	最大误差	平均误差	最大误差	平均误差
Bunny 模型	15	0.014	0.001 33	0.019	0.001 42	0.031	0.001 58	0.014	0.00131
	68	0.042	0.011 00	0.051	0.012 89	0.137	0.015 22	0.023	0.008 45
	91	0.080	0.02400	0.093	0.028 31	0.219	0.048 13	0.044	0.017 00
Chair 模型	19	2.827 5	0.2813	3.178 2	0.3126	4.1782	0.5103	1.827 5	0.2698
	67	4.6586	1.3880	5.4357	1.4531	6.835 1	2.278 5	3.6586	1.3510
	91	9.6786	4.2079	10.5216	4.5827	12.2574	5.3162	6.2186	3.2151

模型Bunny和Chair的精简误差如图2所示,当精 简率较小时,包围盒法、随机采样法和文献[9]方法的 精简误差接近;当精简率较大时,本文方法的最大误 差和平均误差远小于其他3种方法,而且随着精简率 的增大,本文方法得到的精简误差变化较小,其他方 法的精简误差变化较大,具体误差结果详见表1.

为了进一步验证本文算法的精简速度,将本文算法与包围盒法、随机采样法以及文献[9]精简算法进行比较,分别对Bunny和Chair模型进行精简,评估数据结果如表2所示.可以看出,在类似精简率的情况下,本文算法的运行效率介于包围盒法和文献[9]算法之间,其在保证精度的前提下有很好的精简效率.

为了对算法进行更全面的验证,通过SICK LMS511激光扫描仪对实际室内环境进行数据采集, 对得到的点云数据做精简处理.其中图3(a)是实验

表2 Bunny和Chair模型在不同精简方法下的精简速度

	点云个数		精简单	率/%	时间 <i>t</i> /s	
	Bunny	Chair	Bunny	Chair	Bunny	Chair
原始点云	35 947	49 960	_	_	_	_
包围盒法	11 319	16447	68.51	67.08	12	19
随机采样法	11 424	16402	68.22	67.17	9	11
文献[9]算法	11 370	16 197	68.37	67.58	42	66
本文算法	11 312	16227	68.53	67.52	35	52

室一角,其点云形貌信息如图3(b)所示,点云中含有 35211个点,图3(c)为通过本文方法得到的精简结果 图,含有14985个点,精简率为57.44%.由图3可以看 出,本文算法在对点云进行精简时,精简较多的是平 坦区域的点,能够很好地保留边界点或特征点,验证 了本文算法的有效性,能够满足对精简的要求.

(a) 实验室一角

- (b) 精简前(35211)图 3 室内场景的精简效果
- (c) 精简后(14985)

6 结 论

本文提出了一种基于动态网格k邻域搜索的点 云精简算法,在k邻域搜索过程中可以根据点云的密 度,随意扩大或缩小网格,从而快速求得k邻域点,并 使用多判别参数混合的方法对特征点进行提取,保 留了点云模型的细节特征,最后利用包围盒法对非 特征点进行二次精简,避免了空洞区域的产生.本文 以Bunny和Chair模型为验证目标,与包围盒法、随机 采样法以及文献[9]的算法进行对比,结果表明本文 方法能够适应不同类型的点云数据,在有效识别特征 点、最大程度保留模型细节特征的同时,对非特征点 进行了均匀精简,解决了文献[9]的精简方法带来的 空洞区域问题,而且避免了时间消耗长的不足,在保 证精度的前提下有很好的精简效率,具有较高的实际 应用价值.

参考文献(References)

 Yuan X C, Wu L S, Chen H W. Feature preserving point cloud simplification[J]. Optics and Precision Engineering, 2015, 23(9): 2666-2676. [2] 孙作雷,张波,曾连荪,等.基于判别图模型的激光点云数据关联决策[J].控制与决策. 2014, 29(5): 885-888.

(Sun Z L, Zhang B, Zeng L S, et al. Laser point clouds data association decision based on discriminative graphical model[J]. Control and Decision, 2014, 29(5): 885-888.)

- [3] 翟金磊. 空间散乱点云去噪精简重建算法研究 [D]. 西安科技大学电气与控制工程学院, 2015.
 (Zhai J L. Research on spatial scattered points cloud denoising, streamlining and surface reconstruction algorithm[D]. Xi'an: School of Electrical and Control Engineering, Xi'an University of Science and Technology, 2015.)
- [4] Lee K H, Woo H, Suk T. Point data reduction using 3D grids[J]. The International Journal of Advanced Manufacturing Technology, 2001, 18(3): 201-210.
- [5] Zhou Y, Zhang W B, Du F R, et al. Algorithm for reduction of scattered point cloud data based on curvature[J]. Transactions of Beijing Institute of Technology, 2010, 30(7): 785-789.
- [6] Lee P F, Huang C P. The DSO feature based point

cloud simplification[C]. The 8th International Conference on Computer Graphics, Imaging and Visualization. Singapore: IEEE, 2011: 1-6.

- [7] Ge Y K, Li R, Li H L. Study of point cloud data reduction algorithm integrating space partition and curvature[J]. Application Research of Computers, 2012, 29(5): 1997-2000.
- [8] 杨秋翔,杨小青,杜健,等.基于Hausdorff距离的点 云分片精简算法[J].计算机工程与设计,2016,37(8): 2105-2109.

(Yang Q X, Yang X Q, Du J, et al. Point cloud simplification algorithm based on hausdorff distance and segmentation[J]. Computer Engineering and Design, 2016, 37(8): 2105-2109.)

- [9] 张文明, 吴旭, 高雅昆, 等. 一种基于特征提取的点云 精简算法[J]. 光学技术, 2018, 44(6): 733-738.
 (Zhang W M, Wu X, Gao Y K, et al. A point cloud reduction algorithm based on feature extraction[J]. Optical Technique, 2018, 44(6): 733-738.)
- [10] 熊邦书,何明一,俞华璟. 三维散乱数据的k个最近邻 域快速搜索算法[J]. 计算机辅助设计与图形学学报, 2004, 16(7): 909-912.
 (Xiong B S, He M Y, Yu H J. Algorithm for finding k nearest neighbors of scattered points in three dimensions[J]. Journal of Computer Aided Design & Computer Graphics, 2004, 16(7): 909-912.)
- [11] Piegl L A, Tiller W. Algorithm for finding all nearest neighbors[J]. Computer Aided Design, 2002, 34(2): 167-172.
- [12] Nandy S C, Das S, Goswami P P. An efficient nearest neighbors searching algorithm for a query line[J]. Theoretical Computer Science, 2003, 29(1): 273-288.
- [13] 周儒荣, 张丽艳, 苏旭, 等. 海量散乱点的曲面重建算
 法研究[J]. 软件学报, 2001, 12(2): 249-255.
 (Zhou R R, Zhang L Y, Su X, et al. Algorithmic research

on surface reconstruction from dense scattered points[J]. Journal of Software, 2001, 12(2): 249-255.)

- [14] Zhang Y H, Geng G H, Wei X R. Valley-ridge feature extraction from point clouds[J]. Optics & Precision Engineering, 2015, 23(1): 310-318.
- [15] 陈龙, 蔡勇, 张建生, 等. 基于多判别参数混合方法的散乱点云特征提取[J]. 计算机应用研究, 2017(9): 2867-2870.
 (Chen L, Cai Y, Zhang J S, et al. Feature point extraction of scattered point cloud based on multiple parameters hybridization method[J]. Application Research of Computers, 2017(9): 2867-2870.)
- [16] Hoppe H, DeRose T, Duchamp T, et al. Surface reconstruction from unorganized points[J]. ACM SIGGRAPH Computer Graphics, 1992, 26(2): 71-78.
- [17] Pauly M, Gross M, Kobbelt L. Efficient simplification of point-sampled surfaces[C]. IEEE Visualization. Boston: IEEE, 2002: 163-170.
- [18] 王丽辉, 袁保宗. 三维散乱点云模型的特征点检测[J]. 信号处理, 2011, 27(6): 932-938.
 (Wang L H, Yuan B Z. Feature point detection for 3D scattered point cloud model[J]. Signal Processing, 2011, 27(6): 932-938.)
- [19] Shi B Q, Liang J, Liu Q. Adaptive simplification of point cloud using k-means clustering[J]. Computer-Aided Design, 2011, 43(8): 910-922.

作者简介

陈辉(1982-), 女, 副教授, 博士, 从事机器视觉等研究, E-mail: chenhui@shiep.edu.cn;

黄晓铭(1992-), 男, 硕士生, 从事计算机视觉的研究, E-mail: hxm20091203@sina.com;

刘万泉 (1965-), 男, 副教授, 博士, 从事系统控制、机器 学习等研究, E-mail: W.Liu@curtin.edu.au.

(责任编辑:孙艺红)